These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12204198)

  • 61. Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model.
    Reilly JF; Games D; Rydel RE; Freedman S; Schenk D; Young WG; Morrison JH; Bloom FE
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4837-42. PubMed ID: 12697936
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease.
    Mirochnic S; Wolf S; Staufenbiel M; Kempermann G
    Hippocampus; 2009 Oct; 19(10):1008-18. PubMed ID: 19219917
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models.
    Van Dam D; Marescau B; Engelborghs S; Cremers T; Mulder J; Staufenbiel M; De Deyn PP
    Neurochem Int; 2005 Apr; 46(5):409-22. PubMed ID: 15737439
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cortical glucose metabolism is altered in aged transgenic Tg2576 mice that demonstrate Alzheimer plaque pathology.
    Bigl M; Apelt J; Eschrich K; Schliebs R
    J Neural Transm (Vienna); 2003 Jan; 110(1):77-94. PubMed ID: 12541014
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease.
    Andersen JV; Christensen SK; Aldana BI; Nissen JD; Tanila H; Waagepetersen HS
    Neurochem Res; 2017 Jun; 42(6):1589-1598. PubMed ID: 27686658
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease.
    Syková E; Vorísek I; Antonova T; Mazel T; Meyer-Luehmann M; Jucker M; Hájek M; Ort M; Bures J
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):479-84. PubMed ID: 15630088
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer's Disease Neurons by Imposed External Cys/CySS Redox Shifts.
    Dong Y; Sameni S; Digman MA; Brewer GJ
    Sci Rep; 2019 Aug; 9(1):11274. PubMed ID: 31375701
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning".
    Riepe MW; Esclaire F; Kasischke K; Schreiber S; Nakase H; Kempski O; Ludolph AC; Dirnagl U; Hugon J
    J Cereb Blood Flow Metab; 1997 Mar; 17(3):257-64. PubMed ID: 9119898
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Progressive cognitive decline in a transgenic mouse model of Alzheimer's disease overexpressing mutant hAPPswe.
    Middei S; Daniele S; Caprioli A; Ghirardi O; Ammassari-Teule M
    Genes Brain Behav; 2006 Apr; 5(3):249-56. PubMed ID: 16594978
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of ageing on neurogenesis and oxidative stress in the APP(swe)/PS1(deltaE9) mouse model of Alzheimer's disease.
    Hamilton A; Holscher C
    Brain Res; 2012 Apr; 1449():83-93. PubMed ID: 22418058
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer's disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition.
    Stumm C; Hiebel C; Hanstein R; Purrio M; Nagel H; Conrad A; Lutz B; Behl C; Clement AB
    Neurobiol Aging; 2013 Nov; 34(11):2574-84. PubMed ID: 23838176
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology.
    Lüth HJ; Holzer M; Gärtner U; Staufenbiel M; Arendt T
    Brain Res; 2001 Sep; 913(1):57-67. PubMed ID: 11532247
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Impairment of adolescent hippocampal plasticity in a mouse model for Alzheimer's disease precedes disease phenotype.
    Hartl D; Rohe M; Mao L; Staufenbiel M; Zabel C; Klose J
    PLoS One; 2008 Jul; 3(7):e2759. PubMed ID: 18648492
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Parkin overexpression ameliorates hippocampal long-term potentiation and β-amyloid load in an Alzheimer's disease mouse model.
    Hong X; Liu J; Zhu G; Zhuang Y; Suo H; Wang P; Huang D; Xu J; Huang Y; Yu M; Bian M; Sheng Z; Fei J; Song H; Behnisch T; Huang F
    Hum Mol Genet; 2014 Feb; 23(4):1056-72. PubMed ID: 24105468
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Environmental enrichment lessens cognitive decline in APP23 mice without affecting brain sirtuin expression.
    Polito L; Chierchia A; Tunesi M; Bouybayoune I; Kehoe PG; Albani D; Forloni G
    J Alzheimers Dis; 2014; 42(3):851-64. PubMed ID: 24961946
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein.
    Dodart JC; Mathis C; Bales KR; Paul SM; Ungerer A
    Neurosci Lett; 1999 Dec; 277(1):49-52. PubMed ID: 10643895
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice.
    Wirths O; Multhaup G; Czech C; Blanchard V; Tremp G; Pradier L; Beyreuther K; Bayer TA
    Neurosci Lett; 2001 Dec; 316(3):145-8. PubMed ID: 11744223
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of Neuropathological Effects of a High-Fat Diet in a Presymptomatic Alzheimer's Disease Stage in APP/PS1 Mice.
    Ettcheto M; Petrov D; Pedrós I; Alva N; Carbonell T; Beas-Zarate C; Pallas M; Auladell C; Folch J; Camins A
    J Alzheimers Dis; 2016 Jul; 54(1):233-51. PubMed ID: 27567882
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Increased neuronal hypoxic tolerance induced by repetitive chemical hypoxia.
    Li H; Liu C; Sun S
    J Huazhong Univ Sci Technolog Med Sci; 2002; 22(2):132-4. PubMed ID: 12658755
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia.
    Riepe MW; Kasischke K; Raupach A
    Stroke; 1997 Oct; 28(10):2006-11. PubMed ID: 9341711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.