These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12204209)

  • 1. Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures.
    Gwinn RP; Kondratyev A; Gale K
    Neuroscience; 2002; 114(2):403-9. PubMed ID: 12204209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions.
    Kondratyev A; Ved R; Gale K
    Neuroscience; 2002; 114(2):411-6. PubMed ID: 12204210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of repeated minimal electroshock seizures on NGF, BDNF and FGF-2 protein in the rat brain during postnatal development.
    Kim J; Gale K; Kondratyev A
    Int J Dev Neurosci; 2010 May; 28(3):227-32. PubMed ID: 20170723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures.
    Conti G; Gale K; Kondratyev A
    Neurosci Res; 2009 Oct; 65(2):201-9. PubMed ID: 19596387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional and temporal pattern of expression of nerve growth factor and basic fibroblast growth factor mRNA in rat brain following electroconvulsive shock.
    Follesa P; Gale K; Mocchetti I
    Exp Neurol; 1994 May; 127(1):37-44. PubMed ID: 7515352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adrenalectomy reduces FGF-1 and FGF-2 gene expression in specific rat brain regions and differently affects their induction by seizures.
    Riva MA; Fumagalli F; Blom JM; Donati E; Racagni G
    Brain Res Mol Brain Res; 1995 Dec; 34(2):190-6. PubMed ID: 8750822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.
    Nibuya M; Morinobu S; Duman RS
    J Neurosci; 1995 Nov; 15(11):7539-47. PubMed ID: 7472505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic fibroblast growth factor mRNA increases in specific brain regions following convulsive seizures.
    Riva MA; Gale K; Mocchetti I
    Brain Res Mol Brain Res; 1992 Oct; 15(3-4):311-8. PubMed ID: 1331686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seizure-associated induction of basic fibroblast growth factor and its receptor in the rat brain.
    Van Der Wal EA; Gómez-Pinilla F; Cotman CW
    Neuroscience; 1994 May; 60(2):311-23. PubMed ID: 8072686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus.
    Kondratyev A; Sahibzada N; Gale K
    Brain Res Mol Brain Res; 2001 Jul; 91(1-2):1-13. PubMed ID: 11457487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic electroconvulsive seizures down-regulate expression of the immediate-early genes c-fos and c-jun in rat cerebral cortex.
    Winston SM; Hayward MD; Nestler EJ; Duman RS
    J Neurochem; 1990 Jun; 54(6):1920-5. PubMed ID: 2110970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of regulators of G protein signaling mRNA expression in rat brain by acute and chronic electroconvulsive seizures.
    Gold SJ; Heifets BD; Pudiak CM; Potts BW; Nestler EJ
    J Neurochem; 2002 Aug; 82(4):828-38. PubMed ID: 12358788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures.
    Erakovic V; Zupan G; Varljen J; Laginja J; Simonic A
    Epilepsia; 2001 Feb; 42(2):181-9. PubMed ID: 11240587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy.
    Brandt C; Potschka H; Löscher W; Ebert U
    Neuroscience; 2003; 118(3):727-40. PubMed ID: 12710980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic electroconvulsive seizures increase the expression of serotonin2 receptor mRNA in rat frontal cortex.
    Butler MO; Morinobu S; Duman RS
    J Neurochem; 1993 Oct; 61(4):1270-6. PubMed ID: 8376984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated electroconvulsive seizure induces c-Myc down-regulation and Bad inactivation in the rat frontal cortex.
    Jeon WJ; Kim SH; Seo MS; Kim Y; Kang UG; Juhnn YS; Kim YS
    Exp Mol Med; 2008 Aug; 40(4):435-44. PubMed ID: 18779656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute and chronic electroconvulsive shock on noradrenaline release in the rat hippocampus and frontal cortex.
    Thomas DN; Nutt DJ; Holman RB
    Br J Pharmacol; 1992 Jun; 106(2):430-4. PubMed ID: 1356561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High induction threshold for transcription factor KROX-20 in the rat brain: partial co-expression with heat shock protein 70 following limbic seizures.
    Gass P; Herdegen T; Bravo R; Kiessling M
    Brain Res Mol Brain Res; 1994 Jun; 23(4):292-8. PubMed ID: 8090069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Bcl-w expression following focally evoked limbic seizures in the rat.
    Henshall DC; Skradski SL; Lan JQ; Ren T; Simon RP
    Neurosci Lett; 2001 Jun; 305(3):153-6. PubMed ID: 11403928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acute and chronic electroconvulsive shocks on glycogen synthase kinase 3β level and phosphorylation in mice.
    Basar K; Eren-Kocak E; Ozdemir H; Ertugrul A
    J ECT; 2013 Dec; 29(4):265-70. PubMed ID: 23807397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.