These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12204302)

  • 1. Deterministic and stochastic features of fMRI data: implications for analysis of event-related experiments.
    McKeown MJ; Varadarajan V; Huettel S; McCarthy G
    J Neurosci Methods; 2002 Aug; 118(2):103-13. PubMed ID: 12204302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI.
    Remes JJ; Abou Elseoud A; Ollila E; Haapea M; Starck T; Nikkinen J; Tervonen O; Silven O
    Magn Reson Imaging; 2013 Oct; 31(8):1338-48. PubMed ID: 23845397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-free fMRI group analysis using FENICA.
    Schöpf V; Windischberger C; Robinson S; Kasess CH; Fischmeister FP; Lanzenberger R; Albrecht J; Kleemann AM; Kopietz R; Wiesmann M; Moser E
    Neuroimage; 2011 Mar; 55(1):185-93. PubMed ID: 21078400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.
    Mehta S; Grabowski TJ; Razavi M; Eaton B; Bolinger L
    Neuroimage; 2006 Feb; 29(4):1278-93. PubMed ID: 16412665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component.
    Chen H; Yao D; Zhuo Y; Chen L
    Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic designs in event-related fMRI.
    Friston KJ; Zarahn E; Josephs O; Henson RN; Dale AM
    Neuroimage; 1999 Nov; 10(5):607-19. PubMed ID: 10547338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-trial variability in event-related BOLD signals.
    Duann JR; Jung TP; Kuo WJ; Yeh TC; Makeig S; Hsieh JC; Sejnowski TJ
    Neuroimage; 2002 Apr; 15(4):823-35. PubMed ID: 11906223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal analysis of auditory cortex activation as detected with silent event related fMRI.
    Christensen WF; Yetkin FZ
    Stat Med; 2005 Aug; 24(16):2539-56. PubMed ID: 15909287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis.
    Chen H; Yao D
    Magn Reson Imaging; 2004 Jul; 22(6):827-33. PubMed ID: 15234451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially independent activity patterns in functional MRI data during the stroop color-naming task.
    McKeown MJ; Jung TP; Makeig S; Brown G; Kindermann SS; Lee TW; Sejnowski TJ
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):803-10. PubMed ID: 9448244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.
    Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ
    Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses.
    Desmond JE; Glover GH
    J Neurosci Methods; 2002 Aug; 118(2):115-28. PubMed ID: 12204303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards natural stimulation in fMRI--issues of data analysis.
    Malinen S; Hlushchuk Y; Hari R
    Neuroimage; 2007 Mar; 35(1):131-9. PubMed ID: 17208459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain.
    Calhoun VD; Adali T; Pekar JJ; Pearlson GD
    Neuroimage; 2003 Nov; 20(3):1661-9. PubMed ID: 14642476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis.
    Turner GH; Twieg DB
    IEEE Trans Med Imaging; 2005 Jun; 24(6):712-8. PubMed ID: 15957595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.