These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12204847)

  • 21. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.
    Fiora A; Cescatti A
    Tree Physiol; 2006 Sep; 26(9):1217-25. PubMed ID: 16740497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes.
    Oliveras I; Llorens P
    Tree Physiol; 2001 May; 21(7):473-80. PubMed ID: 11340048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydraulic redistribution of soil water by neotropical savanna trees.
    Scholz FG; Bucci SJ; Goldstein G; Meinzer FC; Franco AC
    Tree Physiol; 2002 Jun; 22(9):603-12. PubMed ID: 12069916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology.
    Martín-Gómez P; Serrano L; Ferrio JP
    Tree Physiol; 2017 Apr; 37(4):511-522. PubMed ID: 27974650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy.
    Fernández JE; Durán PJ; Palomo MJ; Diaz-Espejo A; Chamorro V; Girón IF
    Tree Physiol; 2006 Jun; 26(6):719-28. PubMed ID: 16510387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xylem sap flow and drought stress of Fraxinus excelsior saplings.
    Stöhr A; Lösch R
    Tree Physiol; 2004 Feb; 24(2):169-80. PubMed ID: 14676033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.
    Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L
    Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radial variations in xylem sap flux in a temperate red pine plantation forest.
    Bodo AV; Arain MA
    Ecol Process; 2021; 10(1):24. PubMed ID: 34722105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization.
    Millard P; Wendler R; Grassi G; Grelet GA; Tagliavini M
    Tree Physiol; 2006 Apr; 26(4):527-36. PubMed ID: 16414931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow.
    Gall R; Landolt W; Schleppi P; Michellod V; Bucher JB
    Tree Physiol; 2002 Jun; 22(9):613-23. PubMed ID: 12069917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system.
    Do F; Rocheteau A
    Tree Physiol; 2002 Jun; 22(9):649-54. PubMed ID: 12069921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
    Bush SE; Hultine KR; Sperry JS; Ehleringer JR
    Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.
    Berdanier AB; Miniat CF; Clark JS
    Tree Physiol; 2016 Aug; 36(8):932-41. PubMed ID: 27126230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.
    Köcher P; Horna V; Leuschner C
    Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism.
    Hölttä T; Vesala T; Nikinmaa E; Perämäki M; Siivola E; Mencuccini M
    Tree Physiol; 2005 Feb; 25(2):237-43. PubMed ID: 15574405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.
    Reid DE; Silins U; Lieffers VJ
    Tree Physiol; 2003 Aug; 23(12):833-40. PubMed ID: 12865249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.
    Salomón R; Valbuena-Carabaña M; Teskey R; McGuire MA; Aubrey D; González-Doncel I; Gil L; Rodríguez-Calcerrada J
    J Exp Bot; 2016 Apr; 67(9):2817-27. PubMed ID: 27012285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.