These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 12204852)
21. [Characteristics of CO2 exchange at leaf and canopy levels in tropical seasonal rain forest of Xishuangbanna]. Song QH; Zhang YP; Yu GR; Yang Z; Zhao SJ; Gao JM; Sun XM Ying Yong Sheng Tai Xue Bao; 2008 Apr; 19(4):723-8. PubMed ID: 18593028 [TBL] [Abstract][Full Text] [Related]
22. Why does needle photosynthesis decline with tree height in Norway spruce? Räim O; Kaurilind E; Hallik L; Merilo E Plant Biol (Stuttg); 2012 Mar; 14(2):306-14. PubMed ID: 21974690 [TBL] [Abstract][Full Text] [Related]
23. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm. Koch GW; Sillett SC; Antoine ME; Williams CB Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214 [TBL] [Abstract][Full Text] [Related]
24. Two distinct plant respiratory physiotypes might exist which correspond to fast-growing and slow-growing species. Nogués S; Aljazairi S; Arias C; Sánchez E; Aranjuelo I J Plant Physiol; 2014 Aug; 171(13):1157-63. PubMed ID: 24973588 [TBL] [Abstract][Full Text] [Related]
25. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578 [TBL] [Abstract][Full Text] [Related]
26. Photochemistry and photoprotection of 'Gem' avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Shezi S; Magwaza LS; Mashilo J; Tesfay SZ; Mditshwa A J Plant Physiol; 2020; 246-247():153130. PubMed ID: 32065922 [TBL] [Abstract][Full Text] [Related]
27. Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Delaire M; Frak E; Sigogne M; Adam B; Beaujard F; Le Roux X Tree Physiol; 2005 Feb; 25(2):229-35. PubMed ID: 15574404 [TBL] [Abstract][Full Text] [Related]
28. [Study on the net photosynthesis rate of Coptis chinensis from different types and production places]. Qu XY; Sun NX; Li LY; Zhong GY; Yin FJ Zhong Yao Cai; 2011 Mar; 34(3):336-9. PubMed ID: 21823447 [TBL] [Abstract][Full Text] [Related]
29. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen. Pärnik T; Ivanova H; Keerberg O; Vardja R; Niinemets U Tree Physiol; 2014 Jun; 34(6):585-94. PubMed ID: 24898219 [TBL] [Abstract][Full Text] [Related]
30. Carbon uptake, growth and resource-use efficiency in one invasive and six native Hawaiian dry forest tree species. Stratton LC; Goldstein G Tree Physiol; 2001 Dec; 21(18):1327-34. PubMed ID: 11731343 [TBL] [Abstract][Full Text] [Related]
31. Is elevation of carbon dioxide concentration beneficial to seedling photosynthesis in the understory of tropical rain forests? Liang N; Tang Y; Okuda T Tree Physiol; 2001 Sep; 21(14):1047-55. PubMed ID: 11560818 [TBL] [Abstract][Full Text] [Related]
32. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Letts MG; Phelan CA; Johnson DR; Rood SB Tree Physiol; 2008 Jul; 28(7):1037-48. PubMed ID: 18450568 [TBL] [Abstract][Full Text] [Related]
33. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings. Cao B; Dang QL; Zhang S Tree Physiol; 2007 Jun; 27(6):891-9. PubMed ID: 17331907 [TBL] [Abstract][Full Text] [Related]
34. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Koike T; Kitao M; Maruyama Y; Mori S; Lei TT Tree Physiol; 2001 Aug; 21(12-13):951-8. PubMed ID: 11498342 [TBL] [Abstract][Full Text] [Related]
35. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand. Ishida A; Yamazaki JY; Harayama H; Yazaki K; Ladpala P; Nakano T; Adachi M; Yoshimura K; Panuthai S; Staporn D; Maeda T; Maruta E; Diloksumpun S; Puangchit L Tree Physiol; 2014 Jan; 34(1):15-28. PubMed ID: 24336612 [TBL] [Abstract][Full Text] [Related]
36. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
37. Water deficits at anthesis reduce CO(2) assimilation and yield of lychee (Litchi chinensis Sonn.) trees. Menzel CM; Oosthuizen JH; Roe DJ; Doogan VJ Tree Physiol; 1995 Sep; 15(9):611-7. PubMed ID: 14965919 [TBL] [Abstract][Full Text] [Related]
38. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures. Anderson LJ; Cipollini D Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735 [TBL] [Abstract][Full Text] [Related]
39. Does variability in shoot carbon assimilation within the tree crown explain variability in peach fruit growth? Walcroft AS; Lescourret F; Génard M; Sinoquet H; Le Roux X; Donès N Tree Physiol; 2004 Mar; 24(3):313-22. PubMed ID: 14704140 [TBL] [Abstract][Full Text] [Related]
40. Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area. Jiao X; Kørup K; Andersen MN; Petersen KK; Prade T; Jeżowski S; Ornatowski S; Górynowicz B; Spitz I; Lærke PE; Jørgensen U Ann Bot; 2016 Jun; 117(7):1229-39. PubMed ID: 27192706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]