These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 122050)

  • 1. Growth yields, polysaccharide production and energy conservation in chemostat cultures of Rhizobium trifolii.
    de Hollander JA; Bettenhaussen CW; Stouthamer AH
    Antonie Van Leeuwenhoek; 1979; 45(3):401-15. PubMed ID: 122050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1975 Dec; 106(3):251-8. PubMed ID: 766718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electron transport chain of Rhizobium trifolii.
    de Hollander JA; Stouthamer AH
    Eur J Biochem; 1980 Oct; 111(2):473-8. PubMed ID: 7460910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of growth conditions on production of capsular and extracellular polysaccharides by Rhizobium leguminosarum.
    Breedveld MW; Zevenhuizen LP; Canter Cremers HC; Zehnder AJ
    Antonie Van Leeuwenhoek; 1993; 64(1):1-8. PubMed ID: 8273998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the dissolved oxygen concentration and anabolic limitations on the behaviour of Rhizobium ORS571 in chemostat cultures.
    de Vries W; Stam H; Duys JG; Ligtenberg AJ; Simons LH; Stouthamer AH
    Antonie Van Leeuwenhoek; 1986; 52(1):85-96. PubMed ID: 3524445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1976 Mar; 107(2):215-21. PubMed ID: 1259519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transduction in the mitochondrionlike bacterium Paracoccus denitrificans during carbon- or sulphate-limited aerobic growth in continuous culture.
    Lawford HG
    Can J Biochem; 1978 Jan; 56(1):13-22. PubMed ID: 36970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1975 Dec; 152(3):537-46. PubMed ID: 179525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GROWTH AND EXTRACELLULAR POLYSACCHARIDE PRODUCTION BY RHIZOBIUM MELILOTI IN DEFINED MEDIUM.
    DUDMAN WF
    J Bacteriol; 1964 Sep; 88(3):640-5. PubMed ID: 14208501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of oxygen limitation in the formation of poly- -hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii.
    Senior PJ; Beech GA; Ritchie GA; Dawes EA
    Biochem J; 1972 Aug; 128(5):1193-201. PubMed ID: 4643700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy conservation during aerobic growth in Paracoccus denitrificans.
    Meijer EM; van Verseveld HW; van der Beek EG; Stouthamer AH
    Arch Microbiol; 1977 Feb; 112(1):25-34. PubMed ID: 843168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1.
    Breedveld MW; Zevenhuizen LP; Zehnder AJ
    Appl Environ Microbiol; 1990 Jul; 56(7):2080-6. PubMed ID: 2117876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a metabolic balancing technique to the analysis of microbial fermentation data.
    de Hollander JA
    Antonie Van Leeuwenhoek; 1991; 60(3-4):275-92. PubMed ID: 1807198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria of Candida utilis NCYC 321.
    Aiking H; Sterkenburg A; Tempest DW
    Arch Microbiol; 1977 May; 113(1-2):65-72. PubMed ID: 560833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.
    Phillips KR; Pik J; Lawford HG; Lavers B; Kligerman A; Lawford GR
    Can J Microbiol; 1983 Oct; 29(10):1331-8. PubMed ID: 6362809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes.
    Stouthamer AH; Bettenhaussen CW
    Arch Microbiol; 1975 Mar; 102(3):187-92. PubMed ID: 1156084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis.
    Haddock BA; Garland PB
    Biochem J; 1971 Aug; 124(1):155-70. PubMed ID: 4399517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter.
    Cornish A; Greenwood JA; Jones CW
    J Gen Microbiol; 1988 Dec; 134(12):3111-22. PubMed ID: 3269387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exopolysaccharide production by Pseudomonas NCIB11264 grown in continuous culture.
    Williams AG; Wimpenny JW
    J Gen Microbiol; 1978 Jan; 104(1):47-57. PubMed ID: 24085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia assimilation by rhizobium cultures and bacteroids.
    Brown CM; Dilworth MJ
    J Gen Microbiol; 1975 Jan; 86(1):39-48. PubMed ID: 234505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.