BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12205507)

  • 1. Disulfide bond switches.
    Finkel E
    Nat Biotechnol; 2002 Sep; 20(9):887. PubMed ID: 12205507
    [No Abstract]   [Full Text] [Related]  

  • 2. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1.
    Matthias LJ; Yam PT; Jiang XM; Vandegraaff N; Li P; Poumbourios P; Donoghue N; Hogg PJ
    Nat Immunol; 2002 Aug; 3(8):727-32. PubMed ID: 12089508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxins: universal, yet specific thiol-disulfide redox cofactors.
    Follmann H; Häberlein I
    Biofactors; 1995-1996; 5(3):147-56. PubMed ID: 8922271
    [No Abstract]   [Full Text] [Related]  

  • 4. Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication.
    Auwerx J; Isacsson O; Söderlund J; Balzarini J; Johansson M; Lundberg M
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1269-75. PubMed ID: 19038358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide bonds as switches for protein function.
    Hogg PJ
    Trends Biochem Sci; 2003 Apr; 28(4):210-4. PubMed ID: 12713905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide.
    Holmgren A
    Structure; 1995 Mar; 3(3):239-43. PubMed ID: 7788289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment.
    Yi MC; Khosla C
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():197-222. PubMed ID: 27023663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV entry: are all receptors created equal?
    Goldsmith MA; Doms RW
    Nat Immunol; 2002 Aug; 3(8):709-10. PubMed ID: 12089511
    [No Abstract]   [Full Text] [Related]  

  • 9. Thiol-disulfide redox equilibria of glutathione metaboloma compounds investigated by tandem mass spectrometry.
    Rubino FM; Pitton M; Caneva E; Pappini M; Colombi A
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3935-48. PubMed ID: 19003853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues.
    Carvalho AT; Swart M; van Stralen JN; Fernandes PA; Ramos MJ; Bickelhaupt FM
    J Phys Chem B; 2008 Feb; 112(8):2511-23. PubMed ID: 18237164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of closely spaced protein thiols on the surface of mammalian cells.
    Donoghue N; Yam PT; Jiang XM; Hogg PJ
    Protein Sci; 2000 Dec; 9(12):2436-45. PubMed ID: 11206065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of specific surface receptors and activation sensitization in primary resting CD4+ T lymphocytes by the Nef protein of HIV-1.
    Keppler OT; Tibroni N; Venzke S; Rauch S; Fackler OT
    J Leukoc Biol; 2006 Mar; 79(3):616-27. PubMed ID: 16365153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB.
    Inaba K; Takahashi YH; Ito K; Hayashi S
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):287-92. PubMed ID: 16384917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of disulfide bond formation in Escherichia coli.
    Messens J; Collet JF
    Int J Biochem Cell Biol; 2006; 38(7):1050-62. PubMed ID: 16446111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox control on the cell surface: implications for HIV-1 entry.
    Matthias LJ; Hogg PJ
    Antioxid Redox Signal; 2003 Feb; 5(1):133-8. PubMed ID: 12626125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic investigation of the thiol-disulfide exchange step in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase.
    Warner JR; Lawson SL; Copley SD
    Biochemistry; 2005 Aug; 44(30):10360-8. PubMed ID: 16042413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An engineered pathway for the formation of protein disulfide bonds.
    Masip L; Pan JL; Haldar S; Penner-Hahn JE; DeLisa MP; Georgiou G; Bardwell JC; Collet JF
    Science; 2004 Feb; 303(5661):1185-9. PubMed ID: 14976313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol/disulfide exchange equilibria and disulfide bond stability.
    Gilbert HF
    Methods Enzymol; 1995; 251():8-28. PubMed ID: 7651233
    [No Abstract]   [Full Text] [Related]  

  • 19. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro selection of proteins that undergo covalent labeling with small molecules by thiol-disulfide exchange by using ribosome display.
    Yanagida H; Matsuura T; Kazuta Y; Yomo T
    Chembiochem; 2011 Apr; 12(6):962-9. PubMed ID: 21384482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.