BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12206204)

  • 1. Suppression of afterpulsing in photomultipliers by gating the photocathode.
    Bristow MP
    Appl Opt; 2002 Aug; 41(24):4975-87. PubMed ID: 12206204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multichannel gated neutron detector with reduced afterpulse for low-yield neutron measurements in intense hard X-ray backgrounds.
    Abe Y; Nakajima N; Sakaguchi Y; Arikawa Y; Mirfayzi SR; Fujioka S; Taguchi T; Mima K; Yogo A; Nishimura H; Shiraga H; Nakai M
    Rev Sci Instrum; 2018 Oct; 89(10):10I114. PubMed ID: 30399813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lidar-signal compression by photomultiplier gain modulation: influence of detector nonlinearity.
    Bristow MP
    Appl Opt; 1998 Sep; 37(27):6468-79. PubMed ID: 18286154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating a channel photomultiplier with a fast high-voltage switch: reduction of afterpulse rates in a laser-induced fluorescence instrument for measurement of atmospheric OH radical concentrations.
    Kanaya Y; Akimoto H
    Appl Opt; 2006 Feb; 45(6):1254-9. PubMed ID: 16523790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-induced fluorescence in photomultipliers in differential absorption lidar systems.
    Zhao Y
    Appl Opt; 1999 Jul; 38(21):4639-48. PubMed ID: 18323951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesh-based semitransparent photocathodes.
    Carruthers GR
    Appl Opt; 1975 Jul; 14(7):1667-72. PubMed ID: 20154888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars.
    Bristow MP; Bundy DH; Wright AG
    Appl Opt; 1995 Jul; 34(21):4437-52. PubMed ID: 21052278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long lifetime of bialkali photocathodes operating in high gradient superconducting radio frequency gun.
    Wang E; Litvinenko VN; Pinayev I; Gaowei M; Skaritka J; Belomestnykh S; Ben-Zvi I; Brutus JC; Jing Y; Biswas J; Ma J; Narayan G; Petrushina I; Rahman O; Xin T; Rao T; Severino F; Shih K; Smith K; Wang G; Wu Y
    Sci Rep; 2021 Feb; 11(1):4477. PubMed ID: 33627743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers.
    Allen CH; Hansson B; Raiche-Tanner O; Murugkar S
    Opt Lett; 2020 Apr; 45(8):2299-2302. PubMed ID: 32287218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer.
    Liu F; Guo L; DeFazio J; Pavlenko V; Yamamoto M; Moody NA; Yamaguchi H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1710-1717. PubMed ID: 34935342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube.
    Peng Q; Choong WS; Moses WW
    IEEE Trans Nucl Sci; 2013 Oct; 60(5):3212-3219. PubMed ID: 24526798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications.
    Ko GB; Lee JS
    Med Phys; 2015 Jan; 42(1):510-20. PubMed ID: 25563289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse mode saturation properties of photomultiplier tubes.
    Hartman DH
    Rev Sci Instrum; 1978 Aug; 49(8):1130. PubMed ID: 18699267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast microchannel plate photomultipliers.
    Kume H; Koyama K; Nakatsugawa K; Suzuki S; Fatlowitz D
    Appl Opt; 1988 Mar; 27(6):1170-8. PubMed ID: 20531532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for the reduction of signal-induced noise in photomultiplier tubes.
    Williamson CK; De Young RJ
    Appl Opt; 2000 Apr; 39(12):1973-9. PubMed ID: 18345096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian pulse gated InGaAs/InP avalanche photodiode for single photon detection.
    Zhang Y; Zhang X; Wang S
    Opt Lett; 2013 Mar; 38(5):606-8. PubMed ID: 23455238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gated photomultiplier response characterization for DIAL measurements.
    Lee HS; Schwemmer GK; Korb CL; Dombrowski M; Prasad C
    Appl Opt; 1990 Aug; 29(22):3303-15. PubMed ID: 20567413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.
    Machol JL; Marchbanks RD; Senff CJ; McCarty BJ; Eberhard WL; Brewer WA; Richter RA; Alvarez RJ; Law DC; Weickmann AM; Sandberg SP
    Appl Opt; 2009 Jan; 48(3):512-24. PubMed ID: 19151820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of magnetic defocusing for a photomultiplier tube with large area semitransparent photocathode.
    Knight W; Kohanzadeh Y; Lengyel G
    Appl Opt; 1968 Jun; 7(6):1115-20. PubMed ID: 20068748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of the Semiconductor Photocathode Research in China.
    Xie H
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.