These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 12206237)

  • 41. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms.
    Van Drunen WE; Husband BC
    New Phytol; 2019 Nov; 224(3):1266-1277. PubMed ID: 31215649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Palaeobotanical redux: revisiting the age of the angiosperms.
    Herendeen PS; Friis EM; Pedersen KR; Crane PR
    Nat Plants; 2017 Mar; 3():17015. PubMed ID: 28260783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms).
    Massoni J; Couvreur TL; Sauquet H
    BMC Evol Biol; 2015 Mar; 15():49. PubMed ID: 25887386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database.
    Renner SS
    Am J Bot; 2014 Oct; 101(10):1588-96. PubMed ID: 25326608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary history of a keystone pollinator parallels the biome occupancy of angiosperms in the Greater Cape Floristic Region.
    de Jager ML; Ellis AG
    Mol Phylogenet Evol; 2017 Feb; 107():530-537. PubMed ID: 27940332
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Back to the past: a new take on the timing of flowering plant diversification.
    Sanderson MJ
    New Phytol; 2015 Jul; 207(2):257-259. PubMed ID: 26096201
    [No Abstract]   [Full Text] [Related]  

  • 47. Karyotypic diversity: a neglected trait to explain angiosperm diversification?
    Carta A; Escudero M
    Evolution; 2023 Apr; 77(4):1158-1164. PubMed ID: 36721965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tectonic-driven climate change and the diversification of angiosperms.
    Chaboureau AC; Sepulchre P; Donnadieu Y; Franc A
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14066-70. PubMed ID: 25225405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?
    Rosas-Guerrero V; Aguilar R; Martén-Rodríguez S; Ashworth L; Lopezaraiza-Mikel M; Bastida JM; Quesada M
    Ecol Lett; 2014 Mar; 17(3):388-400. PubMed ID: 24393294
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.
    Zhang N; Zeng L; Shan H; Ma H
    New Phytol; 2012 Sep; 195(4):923-937. PubMed ID: 22783877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The root of angiosperm phylogeny inferred from duplicate phytochrome genes.
    Mathews S; Donoghue MJ
    Science; 1999 Oct; 286(5441):947-50. PubMed ID: 10542147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The evolutionary diversification of seed size: using the past to understand the present.
    Sims HJ
    Evolution; 2012 May; 66(5):1636-49. PubMed ID: 22519796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early diversifications of angiosperms and their insect pollinators: were they unlinked?
    Asar Y; Ho SYW; Sauquet H
    Trends Plant Sci; 2022 Sep; 27(9):858-869. PubMed ID: 35568622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphological rates of angiosperm seed size evolution.
    Sims HJ
    Evolution; 2013 May; 67(5):1338-46. PubMed ID: 23617912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Key questions and challenges in angiosperm macroevolution.
    Sauquet H; Magallón S
    New Phytol; 2018 Sep; 219(4):1170-1187. PubMed ID: 29577323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms.
    Samigullin TK; Martin WF; Troitsky AV; Antonov AS
    J Mol Evol; 1999 Sep; 49(3):310-5. PubMed ID: 10473771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fossil evidence of core monocots in the Early Cretaceous.
    Coiffard C; Kardjilov N; Manke I; Bernardes-de-Oliveira MEC
    Nat Plants; 2019 Jul; 5(7):691-696. PubMed ID: 31285562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.
    Merckx V; Chatrou LW; Lemaire B; Sainge MN; Huysmans S; Smets EF
    BMC Evol Biol; 2008 Jun; 8():178. PubMed ID: 18573195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome downsizing, physiological novelty, and the global dominance of flowering plants.
    Simonin KA; Roddy AB
    PLoS Biol; 2018 Jan; 16(1):e2003706. PubMed ID: 29324757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlations of life form, pollination mode and sexual system in aquatic angiosperms.
    Du ZY; Wang QF
    PLoS One; 2014; 9(12):e115653. PubMed ID: 25525810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.