BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12206674)

  • 1. Unusual property of prion protein unfolding in neutral salt solution.
    Nandi PK; Leclerc E; Marc D
    Biochemistry; 2002 Sep; 41(36):11017-24. PubMed ID: 12206674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmolyte trimethylamine N-oxide converts recombinant alpha-helical prion protein to its soluble beta-structured form at high temperature.
    Nandi PK; Bera A; Sizaret PY
    J Mol Biol; 2006 Sep; 362(4):810-20. PubMed ID: 16949096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid.
    Nandi PK; Leclerc E; Nicole JC; Takahashi M
    J Mol Biol; 2002 Sep; 322(1):153-61. PubMed ID: 12215421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheep prion protein synthetic peptide spanning helix 1 and beta-strand 2 (residues 142-166) shows beta-hairpin structure in solution.
    Kozin SA; Bertho G; Mazur AK; Rabesona H; Girault JP; Haertlé T; Takahashi M; Debey P; Hoa GH
    J Biol Chem; 2001 Dec; 276(49):46364-70. PubMed ID: 11577109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atypical effect of salts on the thermodynamic stability of human prion protein.
    Apetri AC; Surewicz WK
    J Biol Chem; 2003 Jun; 278(25):22187-92. PubMed ID: 12676939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow spontaneous α-to-β structural conversion in a non-denaturing neutral condition reveals the intrinsically disordered property of the disulfide-reduced recombinant mouse prion protein.
    Sang JC; Lee CY; Luh FY; Huang YW; Chiang YW; Chen RP
    Prion; 2012; 6(5):489-97. PubMed ID: 22987112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments.
    Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E
    J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and conformational properties of doppel, a prion-like protein, and its single-disulphide mutant.
    Whyte SM; Sylvester ID; Martin SR; Gill AC; Wopfner F; Schätzl HM; Dodson GG; Bayley PM
    Biochem J; 2003 Jul; 373(Pt 2):485-94. PubMed ID: 12665426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsecond unfolding kinetics of sheep prion protein reveals an intermediate that correlates with susceptibility to classical scrapie.
    Chen KC; Xu M; Wedemeyer WJ; Roder H
    Biophys J; 2011 Sep; 101(5):1221-30. PubMed ID: 21889460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The peculiar nature of unfolding of the human prion protein.
    Baskakov IV; Legname G; Gryczynski Z; Prusiner SB
    Protein Sci; 2004 Mar; 13(3):586-95. PubMed ID: 14767078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic intermediate in the folding of human prion protein.
    Apetri AC; Surewicz WK
    J Biol Chem; 2002 Nov; 277(47):44589-92. PubMed ID: 12356762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein.
    Morillas M; Vanik DL; Surewicz WK
    Biochemistry; 2001 Jun; 40(23):6982-7. PubMed ID: 11389614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH.
    Hornemann S; Glockshuber R
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6010-4. PubMed ID: 9600908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salts on the structural behavior of hPrP alpha2-helix-derived analogues: the counterion perspective.
    Ronga L; Palladino P; Tizzano B; Marasco D; Benedetti E; Ragone R; Rossi F
    J Pept Sci; 2006 Dec; 12(12):790-5. PubMed ID: 17131298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of Syrian hamster prion protein rPrP(90-231).
    Liu H; Farr-Jones S; Ulyanov NB; Llinas M; Marqusee S; Groth D; Cohen FE; Prusiner SB; James TL
    Biochemistry; 1999 Apr; 38(17):5362-77. PubMed ID: 10220323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid folding of the prion protein captured by pressure-jump.
    Jenkins DC; Pearson DS; Harvey A; Sylvester ID; Geeves MA; Pinheiro TJT
    Eur Biophys J; 2009 Jun; 38(5):625-635. PubMed ID: 19255752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates.
    Wildegger G; Liemann S; Glockshuber R
    Nat Struct Biol; 1999 Jun; 6(6):550-3. PubMed ID: 10360358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions.
    Nguyen J; Baldwin MA; Cohen FE; Prusiner SB
    Biochemistry; 1995 Apr; 34(13):4186-92. PubMed ID: 7703230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism for low pH triggered misfolding of the human prion protein.
    DeMarco ML; Daggett V
    Biochemistry; 2007 Mar; 46(11):3045-54. PubMed ID: 17315950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.