These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12206886)

  • 41. Probing intramolecular electron transfer within flavocytochrome b2 with a monoclonal antibody.
    Miles CS; Lederer F; Lê KH
    Biochemistry; 1998 Mar; 37(10):3440-8. PubMed ID: 9521665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of varying polyglutamate chain length on the structure and stability of ferricytochrome c.
    Antalík M; Bágel'ová J; Gazová Z; Musatov A; Fedunová D
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):11-20. PubMed ID: 12637007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in cytochrome bc(1): inter monomer electronic communication?
    Khalfaoui-Hassani B; Lanciano P; Lee DW; Darrouzet E; Daldal F
    FEBS Lett; 2012 Mar; 586(5):617-21. PubMed ID: 21878327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A structural perspective on mechanism and function of the cytochrome bc (1) complex.
    Hunte C; Solmaz S; Palsdóttir H; Wenz T
    Results Probl Cell Differ; 2008; 45():253-78. PubMed ID: 18038116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Large scale domain movement in cytochrome bc(1): a new device for electron transfer in proteins.
    Darrouzet E; Moser CC; Dutton PL; Daldal F
    Trends Biochem Sci; 2001 Jul; 26(7):445-51. PubMed ID: 11440857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gaussian fluctuations and linear response in an electron transfer protein.
    Simonson T
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6544-9. PubMed ID: 12011418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III.
    Dockter ME; Steinemann A; Schatz G
    J Biol Chem; 1978 Jan; 253(1):311-7. PubMed ID: 201623
    [No Abstract]   [Full Text] [Related]  

  • 49. Effective coupling in biological electron transfer: exponential or complex distance dependence?
    Evenson JW; Karplus M
    Science; 1993 Nov; 262(5137):1247-9. PubMed ID: 8235654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing the population of the encounter complex affects protein complex formation efficiency.
    Di Savino A; Foerster JM; Ullmann GM; Ubbink M
    FEBS J; 2022 Jan; 289(2):535-548. PubMed ID: 34403572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystallization of proteins from soluble cytochrome P-450cam to membrane protein cytochrome bc(1) complex.
    Yu CA; Yu L
    Biochem Biophys Res Commun; 2003 Dec; 312(1):191-5. PubMed ID: 14630041
    [No Abstract]   [Full Text] [Related]  

  • 52. Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c
    Izzo M; Osella S; Jacquet M; Kiliszek M; Harputlu E; Starkowska A; Łasica A; Unlu CG; Uśpieński T; Niewiadomski P; Bartosik D; Trzaskowski B; Ocakoglu K; Kargul J
    Bioelectrochemistry; 2021 Aug; 140():107818. PubMed ID: 33905959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and synthesis of simplified energy-converting proteins.
    Farid RS; Robertson DE; Moser CC; Pilloud D; DeGrado WF; Dutton PL
    Biochem Soc Trans; 1994 Aug; 22(3):689-93. PubMed ID: 7821665
    [No Abstract]   [Full Text] [Related]  

  • 54. MCMap-A Computational Tool for Mapping Energy Landscapes of Transient Protein-Protein Interactions.
    Foerster JM; Poehner I; Ullmann GM
    ACS Omega; 2018 Jun; 3(6):6465-6475. PubMed ID: 31458826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anionic Lipids Confine Cytochrome
    Chan CK; Singharoy A; Tajkhorshid E
    Biochemistry; 2022 Mar; 61(5):385-397. PubMed ID: 35025510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional insights into lysine acetylation of cytochrome c using mimetic point mutants.
    Márquez I; Pérez-Mejías G; Guerra-Castellano A; Olloqui-Sariego JL; Andreu R; Calvente JJ; De la Rosa MA; Díaz-Moreno I
    FEBS Open Bio; 2021 Dec; 11(12):3304-3323. PubMed ID: 34455704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes.
    Brzezinski P; Moe A; Ädelroth P
    Chem Rev; 2021 Aug; 121(15):9644-9673. PubMed ID: 34184881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic Reactions and Energy Conservation in the Cytochrome
    Sarewicz M; Pintscher S; Pietras R; Borek A; Bujnowicz Ł; Hanke G; Cramer WA; Finazzi G; Osyczka A
    Chem Rev; 2021 Feb; 121(4):2020-2108. PubMed ID: 33464892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relating the multi-functionality of cytochrome c to membrane binding and structural conversion.
    Schweitzer-Stenner R
    Biophys Rev; 2018 Aug; 10(4):1151-1185. PubMed ID: 29574621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New insight into the mechanism of mitochondrial cytochrome c function.
    Chertkova RV; Brazhe NA; Bryantseva TV; Nekrasov AN; Dolgikh DA; Yusipovich AI; Sosnovtseva O; Maksimov GV; Rubin AB; Kirpichnikov MP
    PLoS One; 2017; 12(5):e0178280. PubMed ID: 28562658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.