BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12206887)

  • 1. Coupling proton movements to c-ring rotation in F(1)F(o) ATP synthase: aqueous access channels and helix rotations at the a-c interface.
    Fillingame RH; Angevine CM; Dmitriev OY
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):29-36. PubMed ID: 12206887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of coupling proton movements to c-ring rotation in ATP synthase.
    Fillingame RH; Angevine CM; Dmitriev OY
    FEBS Lett; 2003 Nov; 555(1):29-34. PubMed ID: 14630314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling H(+) transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor.
    Fillingame RH; Jiang W; Dmitriev OY
    J Exp Biol; 2000 Jan; 203(Pt 1):9-17. PubMed ID: 10600668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5.
    Angevine CM; Herold KA; Vincent OD; Fillingame RH
    J Biol Chem; 2007 Mar; 282(12):9001-7. PubMed ID: 17234633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane.
    Angevine CM; Herold KA; Fillingame RH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13179-83. PubMed ID: 14595019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural interpretations of F(0) rotary function in the Escherichia coli F(1)F(0) ATP synthase.
    Fillingame RH; Jiang W; Dmitriev OY; Jones PC
    Biochim Biophys Acta; 2000 May; 1458(2-3):387-403. PubMed ID: 10838053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase.
    Fillingame RH; Steed PR
    Biochim Biophys Acta; 2014 Jul; 1837(7):1063-8. PubMed ID: 24650630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase.
    Aksimentiev A; Balabin IA; Fillingame RH; Schulten K
    Biophys J; 2004 Mar; 86(3):1332-44. PubMed ID: 14990464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
    Lau WC; Rubinstein JL
    Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous access channels in subunit a of rotary ATP synthase.
    Angevine CM; Fillingame RH
    J Biol Chem; 2003 Feb; 278(8):6066-74. PubMed ID: 12473663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism.
    Moore KJ; Angevine CM; Vincent OD; Schwem BE; Fillingame RH
    J Biol Chem; 2008 May; 283(19):13044-52. PubMed ID: 18337242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F(0) of ATP synthase is a rotary proton channel. Obligatory coupling of proton translocation with rotation of c-subunit ring.
    Suzuki T; Ueno H; Mitome N; Suzuki J; Yoshida M
    J Biol Chem; 2002 Apr; 277(15):13281-5. PubMed ID: 11815616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F(O) sector of Escherichia coli ATP synthase.
    Hutcheon ML; Duncan TM; Ngai H; Cross RL
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8519-24. PubMed ID: 11438702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase.
    Fillingame RH; Jones PC; Jiang W; Valiyaveetil FI; Dmitriev OY
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):135-42. PubMed ID: 9693732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel.
    Mitome N; Ono S; Sato H; Suzuki T; Sone N; Yoshida M
    Biochem J; 2010 Aug; 430(1):171-7. PubMed ID: 20518749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the gamma-epsilon complex of ATP synthase.
    Rodgers AJ; Wilce MC
    Nat Struct Biol; 2000 Nov; 7(11):1051-4. PubMed ID: 11062562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological nano motor, ATP synthase F(o)F(1): from catalysis to gammaepsilonc(10-12) subunit assembly rotation.
    Wada Y; Sambongi Y; Futai M
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):499-505. PubMed ID: 11004468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.