BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12206906)

  • 1. Molecular devices of chloroplast F(1)-ATP synthase for the regulation.
    Hisabori T; Konno H; Ichimura H; Strotmann H; Bald D
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):140-6. PubMed ID: 12206906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation.
    Hisabori T; Ueoka-Nakanishi H; Konno H; Koyama F
    FEBS Lett; 2003 Jun; 545(1):71-5. PubMed ID: 12788494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase.
    Richter ML; Samra HS; He F; Giessel AJ; Kuczera KK
    J Bioenerg Biomembr; 2005 Dec; 37(6):467-73. PubMed ID: 16691485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions.
    Kohzuma K; Dal Bosco C; Kanazawa A; Dhingra A; Nitschke W; Meurer J; Kramer DM
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3293-8. PubMed ID: 22328157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, mechanism, and regulation of the chloroplast ATP synthase.
    Hahn A; Vonck J; Mills DJ; Meier T; Kühlbrandt W
    Science; 2018 May; 360(6389):. PubMed ID: 29748256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit.
    McCallum JR; McCarty RE
    Biochim Biophys Acta; 2007 Jul; 1767(7):974-9. PubMed ID: 17559799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the gamma subunit.
    Sugiyama K; Hisabori T
    Biochem Biophys Res Commun; 2003 Feb; 301(2):311-6. PubMed ID: 12565861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of proton flow and ATP synthesis in chloroplasts.
    Evron Y; Johnson EA; McCarty RE
    J Bioenerg Biomembr; 2000 Oct; 32(5):501-6. PubMed ID: 15254385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carboxyl terminus of the epsilon subunit of the chloroplast ATP synthase is exposed during illumination.
    Johnson EA; McCarty RE
    Biochemistry; 2002 Feb; 41(7):2446-51. PubMed ID: 11841239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase.
    Konno H; Suzuki T; Bald D; Yoshida M; Hisabori T
    Biochem Biophys Res Commun; 2004 May; 318(1):17-24. PubMed ID: 15110747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast ATP synthase is reduced by both f-type and m-type thioredoxins.
    Sekiguchi T; Yoshida K; Okegawa Y; Motohashi K; Wakabayashi KI; Hisabori T
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148261. PubMed ID: 32659266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana.
    Dal Bosco C; Lezhneva L; Biehl A; Leister D; Strotmann H; Wanner G; Meurer J
    J Biol Chem; 2004 Jan; 279(2):1060-9. PubMed ID: 14576160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evolutonary modifications of molecular structure of ATP-synthase gamma-subunit].
    Ponomarenko SV
    Zh Evol Biokhim Fiziol; 2007; 43(5):391-7. PubMed ID: 18038634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structure of the proton-binding site in the F(o) rotor of chloroplast ATP synthases.
    Krah A; Pogoryelov D; Meier T; Faraldo-Gómez JD
    J Mol Biol; 2010 Jan; 395(1):20-7. PubMed ID: 19883662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes.
    Konno H; Nakane T; Yoshida M; Ueoka-Nakanishi H; Hara S; Hisabori T
    Plant Cell Physiol; 2012 Apr; 53(4):626-34. PubMed ID: 22362842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance.
    Carrillo LR; Froehlich JE; Cruz JA; Savage LJ; Kramer DM
    Plant J; 2016 Sep; 87(6):654-63. PubMed ID: 27233821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal domain of the epsilon subunit of the chloroplast ATP synthase is not required for ATP synthesis.
    Nowak KF; Tabidze V; McCarty RE
    Biochemistry; 2002 Dec; 41(51):15130-4. PubMed ID: 12484749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chloroplast ATP synthase features the characteristic redox regulation machinery.
    Hisabori T; Sunamura E; Kim Y; Konno H
    Antioxid Redox Signal; 2013 Nov; 19(15):1846-54. PubMed ID: 23145525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.