BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12207650)

  • 1. Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA.
    Schmidt M; Dehne S; Feierabend J
    Plant J; 2002 Sep; 31(5):601-13. PubMed ID: 12207650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen.
    Schmidt M; Grief J; Feierabend J
    Planta; 2006 Mar; 223(4):835-46. PubMed ID: 16341707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational control of photo-induced expression of the Cat2 catalase gene during leaf development in maize.
    Skadsen RW; Scandalios JG
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2785-9. PubMed ID: 3472236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple coordinate controls contribute to a balanced expression of ribulose-1,5-bisphosphate carboxylase/oxygenase subunits in rye leaves.
    Winter U; Feierabend J
    Eur J Biochem; 1990 Jan; 187(2):445-53. PubMed ID: 2298218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean.
    Pekker I; Tel-Or E; Mittler R
    Plant Mol Biol; 2002 Jul; 49(5):429-38. PubMed ID: 12090619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.).
    Shang W; Schmidt M; Feierabend J
    Planta; 2003 Mar; 216(5):865-73. PubMed ID: 12624774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNA cloning and differential gene expression of three catalases in pumpkin.
    Esaka M; Yamada N; Kitabayashi M; Setoguchi Y; Tsugeki R; Kondo M; Nishimura M
    Plant Mol Biol; 1997 Jan; 33(1):141-55. PubMed ID: 9037166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation.
    In O; Berberich T; Romdhane S; Feierabend J
    Planta; 2005 Apr; 220(6):941-50. PubMed ID: 15843963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light.
    Cuming AC; Bennett J
    Eur J Biochem; 1981 Aug; 118(1):71-80. PubMed ID: 6169525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm.
    Redinbaugh MG; Sabre M; Scandalios JG
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6853-7. PubMed ID: 2395878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.
    Luna CM; Pastori GM; Driscoll S; Groten K; Bernard S; Foyer CH
    J Exp Bot; 2005 Jan; 56(411):417-23. PubMed ID: 15569704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-peroxide-mediated catalase gene expression in response to wounding.
    Guan LM; Scandalios JG
    Free Radic Biol Med; 2000 Apr; 28(8):1182-90. PubMed ID: 10889447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on rat liver catalase. X. Effect of hemin and an inhibitor on the translation of catalase messenger RNA1.
    Sakamoto T; Higashi T
    J Biochem; 1979 Feb; 85(2):389-96. PubMed ID: 422538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 5' end of the pea ferredoxin-1 mRNA mediates rapid and reversible light-directed changes in translation in tobacco.
    Hansen ER; Petracek ME; Dickey LF; Thompson WF
    Plant Physiol; 2001 Feb; 125(2):770-8. PubMed ID: 11161034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinactivation of Catalase Occurs under Both High- and Low-Temperature Stress Conditions and Accompanies Photoinhibition of Photosystem II.
    Feierabend J; Schaan C; Hertwig B
    Plant Physiol; 1992 Nov; 100(3):1554-61. PubMed ID: 16653157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light regulation of Fed-1 mRNA requires an element in the 5' untranslated region and correlates with differential polyribosome association.
    Dickey LF; Petracek ME; Nguyen TT; Hansen ER; Thompson WF
    Plant Cell; 1998 Mar; 10(3):475-84. PubMed ID: 9501119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinactivation of catalase in vitro and in leaves.
    Feierabend J; Engel S
    Arch Biochem Biophys; 1986 Dec; 251(2):567-76. PubMed ID: 3800386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae.
    Hamilton B; Hofbauer R; Ruis H
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7609-13. PubMed ID: 6760200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalase transcript accumulation in response to dehydration and osmotic stress in leaves of maize viviparous mutants.
    Guan LM; Scandalios JG
    Redox Rep; 2000; 5(6):377-83. PubMed ID: 11140749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves.
    Agrawal GK; Rakwal R; Jwa NS; Agrawal VP
    Gene; 2002 Jan; 283(1-2):227-36. PubMed ID: 11867229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.