These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12207717)

  • 21. Selection and dispersal in a multispecies oak hybrid zone.
    Dodd RS; Afzal-Rafii Z
    Evolution; 2004 Feb; 58(2):261-9. PubMed ID: 15068344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study of oak-pollen production and phenology in northern California: prediction of annual variation in pollen counts based on geographic and meterologic factors.
    Fairley D; Batchelder GL
    J Allergy Clin Immunol; 1986 Aug; 78(2):300-7. PubMed ID: 3734282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pollen limitation and flower abortion in a wind-pollinated, masting tree.
    Pearse IS; Koenig WD; Funk KA; Pesendorfer MB
    Ecology; 2015 Feb; 96(2):587-93. PubMed ID: 26240878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née.
    Gugger PF; Ikegami M; Sork VL
    Mol Ecol; 2013 Jul; 22(13):3598-612. PubMed ID: 23802553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.
    Deacon NJ; Cavender-Bares J
    PLoS One; 2015; 10(9):e0138783. PubMed ID: 26407244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings.
    Nakanishi A; Tomaru N; Yoshimaru H; Manabe T; Yamamoto S
    Heredity (Edinb); 2009 Feb; 102(2):182-9. PubMed ID: 18813327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seedling response to water stress in valley oak (Quercus lobata) is shaped by different gene networks across populations.
    Mead A; Peñaloza Ramirez J; Bartlett MK; Wright JW; Sack L; Sork VL
    Mol Ecol; 2019 Dec; 28(24):5248-5264. PubMed ID: 31652373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient long-distance gene flow into an isolated relict oak stand.
    Buschbom J; Yanbaev Y; Degen B
    J Hered; 2011; 102(4):464-72. PubMed ID: 21525180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations.
    Knapp EE; Goedde MA; Rice KJ
    Oecologia; 2001 Jun; 128(1):48-55. PubMed ID: 28547089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drivers of synchrony of acorn production in the valley oak (Quercus lobata) at two spatial scales.
    Koenig WD; Knops JMH; Pesendorfer MB; Zaya DN; Ashley MV
    Ecology; 2017 Dec; 98(12):3056-3062. PubMed ID: 28881003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using seedling and pericarp tissues to determine maternal parentage of dispersed valley oak recruits.
    Smouse PE; Sork VL; Scofield DG; Grivet D
    J Hered; 2012; 103(2):250-9. PubMed ID: 22291163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seed-mediated connectivity among fragmented populations of Quercus castanea (Fagaceae) in a Mexican landscape.
    Herrera-Arroyo ML; Sork VL; González-Rodríguez A; Rocha-Ramírez V; Vega E; Oyama K
    Am J Bot; 2013 Aug; 100(8):1663-71. PubMed ID: 23942083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California.
    Craft KJ; Ashley MV; Koenig WD
    Am J Bot; 2002 Nov; 89(11):1792-8. PubMed ID: 21665607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.
    Moran EV; Clark JS
    Mol Ecol; 2011 Mar; 20(6):1248-62. PubMed ID: 21332584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak.
    Ortego J; Riordan EC; Gugger PF; Sork VL
    Mol Ecol; 2012 Jul; 21(13):3210-23. PubMed ID: 22548448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.).
    Abadie P; Roussel G; Dencausse B; Bonnet C; Bertocchi E; Louvet JM; Kremer A; Garnier-Géré P
    J Evol Biol; 2012 Jan; 25(1):157-73. PubMed ID: 22092648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae).
    Dodd RS; Kashani N
    Theor Appl Genet; 2003 Sep; 107(5):884-92. PubMed ID: 12761621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pollen gene flow, male reproductive success, and genetic correlations among offspring in a northern red oak (Quercus rubra L.) seed orchard.
    Alexander L; Woeste K
    PLoS One; 2017; 12(2):e0171598. PubMed ID: 28166543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using genetic markers to estimate the pollen dispersal curve.
    Austerlitz F; Dick CW; Dutech C; Klein EK; Oddou-Muratorio S; Smouse PE; Sork VL
    Mol Ecol; 2004 Apr; 13(4):937-54. PubMed ID: 15012767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae).
    Craft KJ; Ashley MV
    Am J Bot; 2010 Dec; 97(12):1999-2006. PubMed ID: 21616847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.