BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12207917)

  • 1. Inhibition of yeast ribosomal stalk phosphorylation by Cu-Zn superoxide dismutase.
    Zieliński R; Pilecki M; Kubiński K; Zień P; Hellman U; Szyszka R
    Biochem Biophys Res Commun; 2002 Sep; 296(5):1310-6. PubMed ID: 12207917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein kinase 60S is a free catalytic CK2alpha' subunit and forms an inactive complex with superoxide dismutase SOD1.
    Abramczyk O; Zień P; Zieliński R; Pilecki M; Hellman U; Szyszka R
    Biochem Biophys Res Commun; 2003 Jul; 307(1):31-40. PubMed ID: 12849977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halogenated benzimidazole inhibitors of phosphorylation, in vitro and in vivo, of the surface acidic proteins of the yeast ribosomal 60S subunit by endogenous protein kinases CK-II and PK60S.
    Szyszka R; Boguszewska A; Shugar D; Grankowski N
    Acta Biochim Pol; 1996; 43(2):389-96. PubMed ID: 8862185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinases phosphorylating acidic ribosomal proteins from yeast cells.
    Szyszka R
    Folia Microbiol (Praha); 1999; 44(2):142-52. PubMed ID: 10588049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The P1/P2 protein heterodimers assemble to the ribosomal stalk at the moment when the ribosome is committed to translation but not to the native 60S ribosomal subunit in Saccharomyces cerevisiae.
    Bautista-Santos A; Zinker S
    Biochemistry; 2014 Jul; 53(25):4105-12. PubMed ID: 24922111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells.
    Grankowski N; Gasior E; Issinger OG
    Biochim Biophys Acta; 1993 Oct; 1158(2):194-6. PubMed ID: 8399321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro phosphorylation of ribosomal proteins by protein kinases from Saccharomyces cerevisiae.
    Becker-Ursic D; Davies J
    Biochemistry; 1976 Jun; 15(11):2289-96. PubMed ID: 179565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phosphorylation sites of ribosomal P proteins from Saccharomyces cerevisiae cells by endogenous CK-2, PK60S and RAP protein kinases.
    Boguszewska A; Szyszka R; Grankowski N
    Acta Biochim Pol; 1997; 44(2):191-200. PubMed ID: 9360707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process.
    Ballesta JP; Rodriguez-Gabriel MA; Bou G; Briones E; Zambrano R; Remacha M
    FEMS Microbiol Rev; 1999 Oct; 23(5):537-50. PubMed ID: 10525165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational modification of Cu/Zn superoxide dismutase under anaerobic conditions.
    Leitch JM; Li CX; Baron JA; Matthews LM; Cao X; Hart PJ; Culotta VC
    Biochemistry; 2012 Jan; 51(2):677-85. PubMed ID: 22148750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal stalk protein phosphorylating activities in Saccharomyces cerevisiae.
    Bou G; Remacha M; Ballesta JP
    Arch Biochem Biophys; 2000 Mar; 375(1):83-9. PubMed ID: 10683252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel protein inhibitor of protein kinases specific to acidic ribosomal proteins.
    Pilecki M; Szyszka R
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():91-2. PubMed ID: 11820643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway.
    Mudholkar K; Fitzke E; Prinz C; Mayer MP; Rospert S
    Nat Commun; 2017 Oct; 8(1):937. PubMed ID: 29038496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol].
    Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI
    Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential phosphorylation of ribosomal acidic proteins from yeast cell by two endogenous protein kinases: casein kinase-2 and 60S kinase.
    Szyszka R; Boguszewska A; Grankowski N; Ballesta JP
    Acta Biochim Pol; 1995; 42(3):357-62. PubMed ID: 8588489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast protein phosphatase active with acidic ribosomal proteins.
    Pilecki M; Grzyb A; Zień P; Sekuła O; Szyszka R
    J Basic Microbiol; 2000; 40(4):251-60. PubMed ID: 10986671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of ribosomal protein P0 is not essential for ribosome function but can affect translation.
    Rodriguez-Gabriel MA; Remacha M; Ballesta JP
    Biochemistry; 1998 Nov; 37(47):16620-6. PubMed ID: 9843429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver.
    Ciriolo MR; Civitareale P; Carrì MT; De Martino A; Galiazzo F; Rotilio G
    J Biol Chem; 1994 Oct; 269(41):25783-7. PubMed ID: 7929283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity.
    Bermingham-McDonogh O; Gralla EB; Valentine JS
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4789-93. PubMed ID: 3290902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Jakubowicz T; Cytryńska M; Kowalczyk W; Gasior E
    Acta Biochim Pol; 1993; 40(4):497-505. PubMed ID: 8140824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.