These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12208086)

  • 41. [Involvement of endogenous carbon monoxide in regulation of respiratory rhythm in vitro].
    Yang WX; Zhang QL; Hu HY; Liu J; Li YB; Zhou H; Zheng Y
    Sheng Li Xue Bao; 2007 Jun; 59(3):325-30. PubMed ID: 17579788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetazolamide and breathing. Does a clinical dose alter peripheral and central CO(2) sensitivity?
    Teppema LJ; Dahan A
    Am J Respir Crit Care Med; 1999 Nov; 160(5 Pt 1):1592-7. PubMed ID: 10556126
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of CO2 and pH on the spinal respiratory rhythm generator in vitro.
    Dubayle D; Viala D
    Brain Res Bull; 1998; 45(1):83-7. PubMed ID: 9434206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Glycine is involved in the modulation of respiratory rhythmical discharge activity in neonatal rat medullary brain slices].
    Cheng J; Qian ZB; Wu ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Dec; 28(12):2142-5. PubMed ID: 19114341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upregulation of the hyperpolarization-activated cation current in rat thalamic relay neurones by acetazolamide.
    Munsch T; Pape HC
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):505-14. PubMed ID: 10457066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus.
    Kuo FS; Falquetto B; Chen D; Oliveira LM; Takakura AC; Mulkey DK
    J Neurophysiol; 2016 Sep; 116(3):1024-35. PubMed ID: 27306669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Significance of extracellular potassium in central respiratory control studied in the isolated brainstem-spinal cord preparation of the neonatal rat.
    Okada Y; Kuwana S; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol Neurobiol; 2005 Mar; 146(1):21-32. PubMed ID: 15733776
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Possible role of carbonic anhydrase in rat pancreatic islets: enzymatic, secretory, metabolic, ionic, and electrical aspects.
    Sener A; Jijakli H; Zahedi Asl S; Courtois P; Yates AP; Meuris S; Best LC; Malaisse WJ
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1624-30. PubMed ID: 17284575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. P2 receptors modulate respiratory rhythm but do not contribute to central CO2 sensitivity in vitro.
    Lorier AR; Peebles K; Brosenitsch T; Robinson DM; Housley GD; Funk GD
    Respir Physiol Neurobiol; 2004 Aug; 142(1):27-42. PubMed ID: 15351302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acetazolamide reduces hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs.
    Deem S; Hedges RG; Kerr ME; Swenson ER
    Respir Physiol; 2000 Oct; 123(1-2):109-19. PubMed ID: 10996192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of ethanol upon respiratory-related hypoglossal nerve output of neonatal rat brain stem slices.
    Gibson IC; Berger AJ
    J Neurophysiol; 2000 Jan; 83(1):333-42. PubMed ID: 10634876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The anticonvulsant potency of inhibitors of carbonic anhydrase in young and adult rats and mice.
    Rauh CE; Gray WD
    J Pharmacol Exp Ther; 1968 Jun; 161(2):329-34. PubMed ID: 5650141
    [No Abstract]   [Full Text] [Related]  

  • 53. An investigation of the role of carbonic anhydrase in aquatic and aerial gas transfer in the African lungfish Protopterus dolloi.
    Perry SF; Gilmour KM; Swenson ER; Vulesevic B; Chew SF; Ip YK
    J Exp Biol; 2005 Oct; 208(Pt 19):3805-15. PubMed ID: 16169956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Involvement of cAMP-PKA pathway in group Ⅱ metabotropic glutamate receptors-mediated regulation of respiratory rhythm from neonatal rat brainstem slice].
    Zheng QH; Li GC; Cheng J; Fang F; Wu ZH
    Sheng Li Xue Bao; 2011 Jun; 63(3):233-7. PubMed ID: 21681341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Respiration during chronic inhibition of renal carbonic anhydrase: further observations on pharmacology of 2-benzenesulfonamido-1,3, 4-thiadiazole-5-sulfonamide (CL 11,366), acetazolamide and methazolamide.
    Travis DM; Wiley C; Maren TH
    J Pharmacol Exp Ther; 1966 Mar; 151(3):464-81. PubMed ID: 5938482
    [No Abstract]   [Full Text] [Related]  

  • 56. Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia.
    Chen J; Lecuona E; Briva A; Welch LC; Sznajder JI
    Am J Respir Cell Mol Biol; 2008 Jan; 38(1):32-7. PubMed ID: 17690328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain stem chemosensitivity: its implication in central respiratory regulation.
    Morin-Surun MP; Boudinot E; Schäfer T; Denavit-Saubié M
    Biol Neonate; 1994; 65(3-4):166-70. PubMed ID: 8038278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of carbonic anhydrase activity in bullfrog olfactory receptor neurons: histochemical localization and role in CO2 chemoreception.
    Coates EL; Wells CM; Smith RP
    J Comp Physiol A; 1998 Feb; 182(2):163-74. PubMed ID: 9463917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon dioxide excretion and pH-variations in diving ducks after carbonic anhydrase inhibition.
    Andersen HT; Hustvedt BE
    Acta Physiol Scand; 1967 Mar; 69(3):203-8. PubMed ID: 4962209
    [No Abstract]   [Full Text] [Related]  

  • 60. Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men.
    Swenson ER; Hughes JM
    J Appl Physiol (1985); 1993 Jan; 74(1):230-7. PubMed ID: 8444696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.