These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 12208615)
1. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Hsu SB; Tzeng YH Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615 [TBL] [Abstract][Full Text] [Related]
2. Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor. Ai S J Math Biol; 2001 Jan; 42(1):71-94. PubMed ID: 11271509 [TBL] [Abstract][Full Text] [Related]
3. Allelopathy of plasmid-bearing and plasmid-free organisms competing for two complementary resources in a chemostat. Bhattacharyya J; Smith HL; Pal S J Biol Dyn; 2012; 6():628-44. PubMed ID: 22873609 [TBL] [Abstract][Full Text] [Related]
4. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor. Yuan S; Xiao D; Han M Math Biosci; 2006 Jul; 202(1):1-28. PubMed ID: 16797043 [TBL] [Abstract][Full Text] [Related]
5. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat. Vayenas DV; Pavlou S Math Biosci; 1999 Oct; 161(1-2):1-13. PubMed ID: 10546438 [TBL] [Abstract][Full Text] [Related]
6. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
7. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure. Gupta JC; Mukherjee KJ Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116 [TBL] [Abstract][Full Text] [Related]
8. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor. Lu Z; Hadeler KP Math Biosci; 1998 Mar; 148(2):147-59. PubMed ID: 9610104 [TBL] [Abstract][Full Text] [Related]
9. Delayed feedback control for a chemostat model. Tagashira O; Hara T Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826 [TBL] [Abstract][Full Text] [Related]
10. Multiple limit cycles in the chemostat with variable yield. Pilyugin SS; Waltman P Math Biosci; 2003 Apr; 182(2):151-66. PubMed ID: 12591622 [TBL] [Abstract][Full Text] [Related]
11. Long-term dynamics of catabolic plasmids introduced to a microbial community in a polluted environment: a mathematical model. Miki T; Ueki M; Kawabata Z; Yamamura N FEMS Microbiol Ecol; 2007 Nov; 62(2):211-21. PubMed ID: 17627781 [TBL] [Abstract][Full Text] [Related]
12. Coexistence in the chemostat as a result of metabolic by-products. Hesseler J; Schmidt JK; Reichl U; Flockerzi D J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650 [TBL] [Abstract][Full Text] [Related]
13. Biofilms and the plasmid maintenance question. Imran M; Jones D; Smith H Math Biosci; 2005 Feb; 193(2):183-204. PubMed ID: 15748729 [TBL] [Abstract][Full Text] [Related]
14. Competition between plasmid-bearing and plasmid-free organisms in the host: population dynamics and antibiotic resistance. Song HX; Peng YY; Zhu ZF Med Princ Pract; 2006; 15(6):436-42. PubMed ID: 17047351 [TBL] [Abstract][Full Text] [Related]
15. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Lange N; Steinbüchel A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686 [TBL] [Abstract][Full Text] [Related]
16. Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat. Northcott K; Imran M; Wolkowicz GS J Math Biol; 2012 May; 64(6):1043-86. PubMed ID: 21671030 [TBL] [Abstract][Full Text] [Related]
17. Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Nevoigt E; Fassbender A; Stahl U Yeast; 2000 Sep; 16(12):1107-10. PubMed ID: 10953082 [TBL] [Abstract][Full Text] [Related]
18. Gaussian approximations for chemostat models in finite and infinite dimensions. Cloez B; Fritsch C J Math Biol; 2017 Oct; 75(4):805-843. PubMed ID: 28130571 [TBL] [Abstract][Full Text] [Related]
19. A competition model with dynamically allocated inhibitor production. Braselton JP; Waltman P Math Biosci; 2001 Oct; 173(2):55-84. PubMed ID: 11585601 [TBL] [Abstract][Full Text] [Related]
20. The isolation of strains of Saccharomyces cerevisiae showing altered plasmid stability characteristics by means of selective continuous culture. O'Kennedy RD; Patching JW J Biotechnol; 1999 Apr; 69(2-3):203-14. PubMed ID: 10361727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]