BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 12209788)

  • 1. Determination of oxygen gradients in engineered tissue using a fluorescent sensor.
    Kellner K; Liebsch G; Klimant I; Wolfbeis OS; Blunk T; Schulz MB; Göpferich A
    Biotechnol Bioeng; 2002 Oct; 80(1):73-83. PubMed ID: 12209788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling.
    Malda J; Rouwkema J; Martens DE; Le Comte EP; Kooy FK; Tramper J; van Blitterswijk CA; Riesle J
    Biotechnol Bioeng; 2004 Apr; 86(1):9-18. PubMed ID: 15007836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient gradients in engineered cartilage: metabolic kinetics measurement and mass transfer modeling.
    Zhou S; Cui Z; Urban JP
    Biotechnol Bioeng; 2008 Oct; 101(2):408-21. PubMed ID: 18727036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.
    Zhou S; Cui Z; Urban JP
    Arthritis Rheum; 2004 Dec; 50(12):3915-24. PubMed ID: 15593204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors.
    Gao FG; Jeevarajan AS; Anderson MM
    Biotechnol Bioeng; 2004 May; 86(4):425-33. PubMed ID: 15112295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs.
    Malda J; Woodfield TB; van der Vloodt F; Kooy FK; Martens DE; Tramper J; van Blitterswijk CA; Riesle J
    Biomaterials; 2004 Nov; 25(26):5773-80. PubMed ID: 15147823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage.
    Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC
    Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage tissue engineering: controversy in the effect of oxygen.
    Malda J; Martens DE; Tramper J; van Blitterswijk CA; Riesle J
    Crit Rev Biotechnol; 2003; 23(3):175-94. PubMed ID: 14743989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of continuous culture on the growth and structure of tissue-engineered cartilage.
    Khan AA; Suits JM; Kandel RA; Waldman SD
    Biotechnol Prog; 2009; 25(2):508-15. PubMed ID: 19294749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue.
    Brown DA; MacLellan WR; Laks H; Dunn JC; Wu BM; Beygui RE
    Biotechnol Bioeng; 2007 Jul; 97(4):962-75. PubMed ID: 17195988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.
    Pierre J; Gemmiti CV; Kolambkar YM; Oddou C; Guldberg RE
    Biomech Model Mechanobiol; 2008 Dec; 7(6):497-510. PubMed ID: 17999099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fundamentals of tissue engineering: scaffolds and bioreactors.
    Vunjak-Novakovic G
    Novartis Found Symp; 2003; 249():34-46; discussion 46-51, 170-4, 239-41. PubMed ID: 12708648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique for the mapping of oxygen tension on the brain surface.
    Kimura S; Matsumoto K; Mineura K; Itoh T
    J Neurol Sci; 2007 Jul; 258(1-2):60-8. PubMed ID: 17408696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density seeding of myocyte cells for cardiac tissue engineering.
    Radisic M; Euloth M; Yang L; Langer R; Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 2003 May; 82(4):403-14. PubMed ID: 12632397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the paratrend multi-analyte sensor for potential utilization in long-duration automated cell culture monitoring.
    Hwang EY; Pappas D; Jeevarajan AS; Anderson MM
    Biomed Microdevices; 2004 Sep; 6(3):241-9. PubMed ID: 15377834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive measurement of dissolved oxygen in shake flasks.
    Tolosa L; Kostov Y; Harms P; Rao G
    Biotechnol Bioeng; 2002 Dec; 80(5):594-7. PubMed ID: 12355471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors.
    Babilas P; Lamby P; Prantl L; Schreml S; Jung EM; Liebsch G; Wolfbeis OS; Landthaler M; Szeimies RM; Abels C
    Skin Res Technol; 2008 Aug; 14(3):304-11. PubMed ID: 19159376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a bioreactor for physical stimulation of engineered cartilage.
    Démarteau O; Jakob M; Schäfer D; Heberer M; Martin I
    Biorheology; 2003; 40(1-3):331-6. PubMed ID: 12454423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method.
    Masuda K; Sah RL; Hejna MJ; Thonar EJ
    J Orthop Res; 2003 Jan; 21(1):139-48. PubMed ID: 12507591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.