These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12209799)

  • 41. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Fuciños P; Guerra NP; Pastrana L
    J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Online shear viscosity measurement of starchy melts enriched in wheat bran.
    Robin F; Bovet N; Pineau N; Schuchmann HP; Palzer S
    J Food Sci; 2011; 76(5):E405-12. PubMed ID: 22417431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viscoelastic fluid description of bacterial biofilm material properties.
    Klapper I; Rupp CJ; Cargo R; Purvedorj B; Stoodley P
    Biotechnol Bioeng; 2002 Nov; 80(3):289-96. PubMed ID: 12226861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rheological and pasting characteristics of wheat starch modified with sequential triple enzymes.
    Li H; Li J; Guo L
    Carbohydr Polym; 2020 Feb; 230():115667. PubMed ID: 31887885
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Capacity of edible seaweeds to modify in vitro starch digestibility of wheat bread.
    Goñi I; Valdivieso L; Gudiel-Urbano M
    Nahrung; 2002 Feb; 46(1):18-20. PubMed ID: 11890047
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue.
    Sørensen HR; Pedersen S; Meyer AS
    Biotechnol Prog; 2006; 22(2):505-13. PubMed ID: 16599569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties.
    Van Steertegem B; Pareyt B; Brijs K; Delcour JA
    Food Chem; 2013 Aug; 139(1-4):1113-20. PubMed ID: 23561216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase.
    Ernest V; Shiny PJ; Mukherjee A; Chandrasekaran N
    Carbohydr Res; 2012 May; 352():60-4. PubMed ID: 22405762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A kinetic model of starch hydrolysis by alpha- and beta-amylase during mashing.
    Marc A; Engasser JM; Moll M; Flayeux R
    Biotechnol Bioeng; 1983 Feb; 25(2):481-96. PubMed ID: 18548665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: the role of surface proteins and lipids.
    Wang S; Luo H; Zhang J; Zhang Y; He Z; Wang S
    J Agric Food Chem; 2014 Apr; 62(16):3636-43. PubMed ID: 24670231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An analytical method for measuring α-amylase activity in starch-containing foods.
    Koyama K; Hirao T; Toriba A; Hayakawa K
    Biomed Chromatogr; 2013 May; 27(5):583-8. PubMed ID: 23074083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.
    Kumar PA; Pushpadass HA; Franklin ME; Simha HV; Nath BS
    Int J Biol Macromol; 2016 Oct; 91():838-45. PubMed ID: 27296446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of alpha-amylases from different sources on the firming of concentrated wheat starch gels: relationship to bread staling.
    Palacios HR; Schwarz PB; D'Appolonia BL
    J Agric Food Chem; 2004 Sep; 52(19):5987-94. PubMed ID: 15366853
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum.
    Aquino AC; Jorge JA; Terenzi HF; Polizeli ML
    Appl Microbiol Biotechnol; 2003 May; 61(4):323-8. PubMed ID: 12743761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Limiting factors of starch hydrolysis.
    Colonna P; Leloup V; Buléon A
    Eur J Clin Nutr; 1992 Oct; 46 Suppl 2():S17-32. PubMed ID: 1330526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corn starch modification during endogenous malt amylases: The impact of synergistic hydrolysis time of α-amylase and β-amylase and limit dextrinase.
    Gui Y; Zou F; Li J; Tang J; Guo L; Cui B
    Int J Biol Macromol; 2021 Nov; 190():819-826. PubMed ID: 34534581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of honey amylase.
    Babacan S; Rand AG
    J Food Sci; 2007 Jan; 72(1):C050-5. PubMed ID: 17995872
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility.
    Wang S; Wang S; Liu L; Wang S; Copeland L
    J Agric Food Chem; 2017 Mar; 65(8):1697-1706. PubMed ID: 28161950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of Activation Energies and the Optimum Temperatures of Hydrolysis of Starch by
    Miłek J
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.