These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 12209815)
1. Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Visser D; van Zuylen GA; van Dam JC; Oudshoorn A; Eman MR; Ras C; van Gulik WM; Frank J; van Dedem GW; Heijnen JJ Biotechnol Bioeng; 2002 Sep; 79(6):674-81. PubMed ID: 12209815 [TBL] [Abstract][Full Text] [Related]
2. In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Mashego MR; van Gulik WM; Vinke JL; Visser D; Heijnen JJ Metab Eng; 2006 Jul; 8(4):370-83. PubMed ID: 16618549 [TBL] [Abstract][Full Text] [Related]
3. New experimental and theoretical tools for metabolic engineering of micro-organisms. Heijnen JJ Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559 [TBL] [Abstract][Full Text] [Related]
4. New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Buziol S; Bashir I; Baumeister A; Claassen W; Noisommit-Rizzi N; Mailinger W; Reuss M Biotechnol Bioeng; 2002 Dec; 80(6):632-6. PubMed ID: 12378604 [TBL] [Abstract][Full Text] [Related]
5. Catching prompt metabolite dynamics in Escherichia coli with the BioScope at oxygen rich conditions. De Mey M; Taymaz-Nikerel H; Baart G; Waegeman H; Maertens J; Heijnen JJ; van Gulik WM Metab Eng; 2010 Sep; 12(5):477-87. PubMed ID: 20447466 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an experimental miniature bioreactor for cellular perturbation studies. Aboka FO; Yang H; de Jonge LP; Kerste R; van Winden WA; van Gulik WM; Hoogendijk R; Oudshoorn A; Heijnen JJ Biotechnol Bioeng; 2006 Dec; 95(6):1032-42. PubMed ID: 16977621 [TBL] [Abstract][Full Text] [Related]
7. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. Mashego MR; van Gulik WM; Heijnen JJ FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Determination of in vivo oxygen uptake and carbon dioxide evolution rates from off-gas measurements under highly dynamic conditions. Wu L; Lange HC; Van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2003 Feb; 81(4):448-58. PubMed ID: 12491530 [TBL] [Abstract][Full Text] [Related]
10. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Hewitt CJ; Nebe-Von Caron G; Axelsson B; McFarlane CM; Nienow AW Biotechnol Bioeng; 2000 Nov; 70(4):381-90. PubMed ID: 11005920 [TBL] [Abstract][Full Text] [Related]
11. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
12. Research on fermentation scale-up based on the OUR obtained from a shake flask. Fan D; Shang L; Yu J Chin J Biotechnol; 1996; 12(3):177-84. PubMed ID: 9093760 [TBL] [Abstract][Full Text] [Related]
14. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process. Yüzgeç U; Türker M; Hocalar A ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027 [TBL] [Abstract][Full Text] [Related]
15. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Puskeiler R; Kusterer A; John GT; Weuster-Botz D Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):227-35. PubMed ID: 15853771 [TBL] [Abstract][Full Text] [Related]
16. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Gill NK; Appleton M; Baganz F; Lye GJ Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769 [TBL] [Abstract][Full Text] [Related]
17. Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Mashego MR; van Gulik WM; Vinke JL; Heijnen JJ Biotechnol Bioeng; 2003 Aug; 83(4):395-9. PubMed ID: 12800134 [TBL] [Abstract][Full Text] [Related]
18. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Hjersted JL; Henson MA Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660 [TBL] [Abstract][Full Text] [Related]
19. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate. Aboka FO; Heijnen JJ; van Winden WA FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865 [TBL] [Abstract][Full Text] [Related]
20. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses. Reis N; Gonçalves CN; Vicente AA; Teixeira JA Biotechnol Bioeng; 2006 Nov; 95(4):744-53. PubMed ID: 16758459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]