These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 12209840)
1. Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. Hamam BN; Amaral DG; Alonso AA J Comp Neurol; 2002 Sep; 451(1):45-61. PubMed ID: 12209840 [TBL] [Abstract][Full Text] [Related]
2. Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. Hamam BN; Kennedy TE; Alonso A; Amaral DG J Comp Neurol; 2000 Mar; 418(4):457-72. PubMed ID: 10713573 [TBL] [Abstract][Full Text] [Related]
3. Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. Tahvildari B; Alonso A J Comp Neurol; 2005 Oct; 491(2):123-40. PubMed ID: 16127693 [TBL] [Abstract][Full Text] [Related]
4. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Buckmaster PS; Alonso A; Canfield DR; Amaral DG J Comp Neurol; 2004 Mar; 470(3):317-29. PubMed ID: 14755519 [TBL] [Abstract][Full Text] [Related]
5. Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex. Yoshida M; Alonso A J Neurophysiol; 2007 Nov; 98(5):2779-94. PubMed ID: 17728392 [TBL] [Abstract][Full Text] [Related]
7. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. Kasper EM; Larkman AU; Lübke J; Blakemore C J Comp Neurol; 1994 Jan; 339(4):459-74. PubMed ID: 8144741 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Nowak LG; Azouz R; Sanchez-Vives MV; Gray CM; McCormick DA J Neurophysiol; 2003 Mar; 89(3):1541-66. PubMed ID: 12626627 [TBL] [Abstract][Full Text] [Related]
9. Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties. Kasper EM; Larkman AU; Lübke J; Blakemore C J Comp Neurol; 1994 Jan; 339(4):475-94. PubMed ID: 8144742 [TBL] [Abstract][Full Text] [Related]
10. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro. Dickson CT; Mena AR; Alonso A Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357 [TBL] [Abstract][Full Text] [Related]
11. Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse. Gatome CW; Slomianka L; Lipp HP; Amrein I Neuroscience; 2010 Sep; 170(1):156-65. PubMed ID: 20600643 [TBL] [Abstract][Full Text] [Related]
12. Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. van Haeften T; Baks-te-Bulte L; Goede PH; Wouterlood FG; Witter MP Hippocampus; 2003; 13(8):943-52. PubMed ID: 14750656 [TBL] [Abstract][Full Text] [Related]
13. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Ylinen A; Soltész I; Bragin A; Penttonen M; Sik A; Buzsáki G Hippocampus; 1995; 5(1):78-90. PubMed ID: 7787949 [TBL] [Abstract][Full Text] [Related]
14. Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Schreiber S; Erchova I; Heinemann U; Herz AV J Neurophysiol; 2004 Jul; 92(1):408-15. PubMed ID: 15014100 [TBL] [Abstract][Full Text] [Related]
15. Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Wouterlood FG; Van Haeften T; Eijkhoudt M; Baks-Te-Bulte L; Goede PH; Witter MP Brain Res; 2004 Jul; 1013(1):1-12. PubMed ID: 15196963 [TBL] [Abstract][Full Text] [Related]
16. Three classes of pyramidal neurons in layer V of rat perirhinal cortex. Moyer JR; McNay EC; Brown TH Hippocampus; 2002; 12(2):218-34. PubMed ID: 12004792 [TBL] [Abstract][Full Text] [Related]
17. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Hargreaves EL; Rao G; Lee I; Knierim JJ Science; 2005 Jun; 308(5729):1792-4. PubMed ID: 15961670 [TBL] [Abstract][Full Text] [Related]
18. Cellular correlates of spontaneous periodic events in the medial entorhinal cortex of the in vitro isolated guinea pig brain. Gnatkovsky V; Wendling F; de Curtis M Eur J Neurosci; 2007 Jul; 26(2):302-11. PubMed ID: 17650108 [TBL] [Abstract][Full Text] [Related]
19. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. Manns ID; Alonso A; Jones BE J Neurophysiol; 2003 Feb; 89(2):1057-66. PubMed ID: 12574480 [TBL] [Abstract][Full Text] [Related]
20. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex. Canto CB; Witter MP Hippocampus; 2012 Jun; 22(6):1277-99. PubMed ID: 22161956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]