These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12209906)

  • 1. Histological examination of beta-tricalcium phosphate graft in human femur.
    Ogose A; Hotta T; Hatano H; Kawashima H; Tokunaga K; Endo N; Umezu H
    J Biomed Mater Res; 2002; 63(5):601-4. PubMed ID: 12209906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones.
    Ogose A; Kondo N; Umezu H; Hotta T; Kawashima H; Tokunaga K; Ito T; Kudo N; Hoshino M; Gu W; Endo N
    Biomaterials; 2006 Mar; 27(8):1542-9. PubMed ID: 16165205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.
    Lee JS; Wikesjö UM; Jung UW; Choi SH; Pippig S; Siedler M; Kim CK
    J Clin Periodontol; 2010 Apr; 37(4):382-9. PubMed ID: 20447262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates.
    Okanoue Y; Ikeuchi M; Takemasa R; Tani T; Matsumoto T; Sakamoto M; Nakasu M
    Arch Orthop Trauma Surg; 2012 Nov; 132(11):1603-10. PubMed ID: 22760581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation.
    Yamauchi K; Takahashi T; Funaki K; Hamada Y; Yamashita Y
    Int J Oral Maxillofac Surg; 2010 Oct; 39(10):1000-6. PubMed ID: 20615666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials.
    Hokugo A; Sawada Y; Sugimoto K; Fukuda A; Mushimoto K; Morita S; Tabata Y
    Int J Oral Maxillofac Surg; 2006 Nov; 35(11):1034-40. PubMed ID: 16965895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs.
    Jensen SS; Broggini N; Hjørting-Hansen E; Schenk R; Buser D
    Clin Oral Implants Res; 2006 Jun; 17(3):237-43. PubMed ID: 16672017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry.
    Kovács K; Velich N; Huszár T; Szabó G; Semjén G; Reiczigel J; Suba Z
    Acta Vet Hung; 2003; 51(4):475-84. PubMed ID: 14680059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Tricalcium phosphate for bone replacement: stability and integration in sheep.
    Mayr HO; Suedkamp NP; Hammer T; Hein W; Hube R; Roth PV; Bernstein A
    J Biomech; 2015 Apr; 48(6):1023-31. PubMed ID: 25704530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material.
    Artzi Z; Kozlovsky A; Nemcovsky CE; Weinreb M
    J Clin Periodontol; 2005 Feb; 32(2):193-9. PubMed ID: 15691351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological response to β-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study.
    Leventis MD; Fairbairn P; Dontas I; Faratzis G; Valavanis KD; Khaldi L; Kostakis G; Eleftheriadis E
    Implant Dent; 2014 Feb; 23(1):37-43. PubMed ID: 24384743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation.
    Lee JH; Ryu MY; Baek HR; Seo JH; Lee KM; Lee JH
    Biomed Mater; 2014 Aug; 9(5):055002. PubMed ID: 25135209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new bone-inducing biodegradable porous beta-tricalcium phosphate.
    Matsushita N; Terai H; Okada T; Nozaki K; Inoue H; Miyamoto S; Takaoka K
    J Biomed Mater Res A; 2004 Sep; 70(3):450-8. PubMed ID: 15293319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massive bone reconstruction with heat-treated bone graft loaded autologous bone marrow-derived stromal cells and β-tricalcium phosphate composites in canine models.
    Koyanagi H; Ae K; Maehara H; Yuasa M; Masaoka T; Yamada T; Taniyama T; Saito M; Funauchi Y; Yoshii T; Okawa A; Sotome S
    J Orthop Res; 2013 Aug; 31(8):1308-16. PubMed ID: 23589164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model.
    Lim HC; Zhang ML; Lee JS; Jung UW; Choi SH
    Int J Oral Maxillofac Implants; 2015; 30(1):65-72. PubMed ID: 25265122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.