These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 12209910)

  • 1. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement.
    Vallo CI
    J Biomed Mater Res; 2002; 63(5):627-42. PubMed ID: 12209910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of bead size and polymerization in PMMA bone cement on vancomycin release.
    Shinsako K; Okui Y; Matsuda Y; Kunimasa J; Otsuka M
    Biomed Mater Eng; 2008; 18(6):377-85. PubMed ID: 19197114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.
    Li C; Kotha S; Mason J
    Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on modelling of PMMA bone cement polymerisation.
    Stańczyk M
    J Biomech; 2005 Jul; 38(7):1397-403. PubMed ID: 15922750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement.
    Belkoff SM; Sanders JC; Jasper LE
    J Biomed Mater Res; 2002; 63(4):396-9. PubMed ID: 12115746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic void behavior in polymerizing polymethyl methacrylate cement.
    Muller SD; McCaskie AW
    J Arthroplasty; 2006 Feb; 21(2):279-83. PubMed ID: 16520219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo behavior of acrylic bone cement in total hip arthroplasty.
    Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L
    Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore distribution and material properties of bone cement cured at different temperatures.
    Pelletier MH; Lau AC; Smitham PJ; Nielsen G; Walsh WR
    Acta Biomater; 2010 Mar; 6(3):886-91. PubMed ID: 19800995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally induced strains and total shrinkage of the polymethyl-methacrylate cement in simplified models of total hip arthroplasty.
    Griza S; Ueki MM; Souza DH; Cervieri A; Strohaecker TR
    J Mech Behav Biomed Mater; 2013 Feb; 18():29-36. PubMed ID: 23237878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.
    Gilbert JL
    J Biomed Mater Res A; 2006 Dec; 79(4):999-1014. PubMed ID: 16958044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element temperature analysis of a total hip replacement and measurement of PMMA curing temperatures.
    Swenson LW; Schurman DJ; Piziali Rl
    J Biomed Mater Res; 1981 Jan; 15(1):83-96. PubMed ID: 7348707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling heat transfer in a bone-cement-prosthesis system.
    Hansen E
    J Biomech; 2003 Jun; 36(6):787-95. PubMed ID: 12742446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite/PMMA composites as bone cements.
    Chu KT; Oshida Y; Hancock EB; Kowolik MJ; Barco T; Zunt SL
    Biomed Mater Eng; 2004; 14(1):87-105. PubMed ID: 14757957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.
    Lewis G; Janna S; Bhattaram A
    Biomaterials; 2005 Jul; 26(20):4317-25. PubMed ID: 15683656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exothermal characteristics and release of residual monomers from fiber-reinforced oligomer-modified acrylic bone cement.
    Puska MA; Lassila LV; Aho AJ; Yli-Urpo A; Vallittu PK; Kangasniemi I
    J Biomater Appl; 2005 Jul; 20(1):51-64. PubMed ID: 15972363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal analysis of bone cement polymerisation at the cement-bone interface.
    Stańczyk M; van Rietbergen B
    J Biomech; 2004 Dec; 37(12):1803-10. PubMed ID: 15519587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal characterization of PMMA-based bone cement curing.
    Li C; Mason J; Yakimicki D
    J Mater Sci Mater Med; 2004 Jan; 15(1):85-9. PubMed ID: 15338595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.