These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12209947)
1. In vitro change in mechanical strength of beta-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. Kikuchi M; Koyama Y; Takakuda K; Miyairi H; Shirahama N; Tanaka J J Biomed Mater Res; 2002 Nov; 62(2):265-72. PubMed ID: 12209947 [TBL] [Abstract][Full Text] [Related]
2. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Kikuchi M; Koyama Y; Yamada T; Imamura Y; Okada T; Shirahama N; Akita K; Takakuda K; Tanaka J Biomaterials; 2004 Dec; 25(28):5979-86. PubMed ID: 15183612 [TBL] [Abstract][Full Text] [Related]
3. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate. Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066 [TBL] [Abstract][Full Text] [Related]
4. [Study on regeneration of mandibular bone with bioabsorbable organic/inorganic composite membrane]. Koyama Y Kokubyo Gakkai Zasshi; 2000 Mar; 67(1):63-9. PubMed ID: 10774161 [TBL] [Abstract][Full Text] [Related]
5. Alveolar bone regeneration using absorbable poly(L-lactide-co-epsilon-caprolactone)/beta-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factor. Kinoshita Y; Matsuo M; Todoki K; Ozono S; Fukuoka S; Tsuzuki H; Nakamura M; Tomihata K; Shimamoto T; Ikada Y Int J Oral Maxillofac Surg; 2008 Mar; 37(3):275-81. PubMed ID: 18262760 [TBL] [Abstract][Full Text] [Related]
6. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. Ignatius AA; Ohnmacht M; Claes LE; Kreidler J; Palm F J Biomed Mater Res; 2001; 58(5):564-9. PubMed ID: 11505432 [TBL] [Abstract][Full Text] [Related]
7. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338 [TBL] [Abstract][Full Text] [Related]
8. Degradation and swelling issues of poly-(d,l-lactide)/β-tricalcium phosphate/calcium carbonate composites for bone replacement. Abert J; Amella A; Weigelt S; Fischer H J Mech Behav Biomed Mater; 2016 Feb; 54():82-92. PubMed ID: 26433089 [TBL] [Abstract][Full Text] [Related]
9. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites. Kobayashi S; Sakamoto K J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265 [TBL] [Abstract][Full Text] [Related]
10. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Lin FH; Chen TM; Lin CP; Lee CJ Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration. Hoornaert A; d'Arros C; Heymann MF; Layrolle P Biomed Mater; 2016 Aug; 11(4):045012. PubMed ID: 27509180 [TBL] [Abstract][Full Text] [Related]
12. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of bone fenestration on mandiblar by the guided bone regeneration methods with beta-TCP/PLGC membranes. Koyama Y; Kikuchi M; Edamura K; Nagaoka K; Tanaka S; Tanaka J; Takakuda K J Nanosci Nanotechnol; 2007 Mar; 7(3):859-61. PubMed ID: 17450848 [TBL] [Abstract][Full Text] [Related]
14. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
15. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties. Zheng X; Zhou S; Yu X; Li X; Feng B; Qu S; Weng J J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):170-80. PubMed ID: 18161831 [TBL] [Abstract][Full Text] [Related]
16. Cell culture test of TCP/CPLA composite. Kikuchi M; Tanaka J; Koyama Y; Takakuda K J Biomed Mater Res; 1999; 48(2):108-10. PubMed ID: 10331901 [TBL] [Abstract][Full Text] [Related]
17. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Pazarçeviren AE; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2019 Apr; 14(3):035018. PubMed ID: 30665204 [TBL] [Abstract][Full Text] [Related]
18. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study. Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270 [TBL] [Abstract][Full Text] [Related]
19. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
20. The preliminary study and tentative animal study on the sintered PDLLA/TCP composites as bone fracture internal fixation. Lin FH; Chen TM; Lee CJ Biomed Sci Instrum; 1997; 34():76-81. PubMed ID: 9603016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]