These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12209951)

  • 21. Low-modulus PMMA bone cement modified with castor oil.
    López A; Hoess A; Thersleff T; Ott M; Engqvist H; Persson C
    Biomed Mater Eng; 2011; 21(5-6):323-32. PubMed ID: 22561251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of bone cements prepared with functionalized methacrylates and hydroxyapatite.
    Islas-Blancas ME; Cervantes JM; Vargas-Coronado R; Cauich-Rodríguez JV; Vera-Graziano R; Martinez-Richa A
    J Biomater Sci Polym Ed; 2001; 12(8):893-910. PubMed ID: 11718483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of low dose teicoplanin-loaded acrylic bone cement on biocompatibility of bone cement.
    Öztemür Z; Sümer Z; Tunç T; Pazarcé Ö; Bulut O
    Acta Microbiol Immunol Hung; 2013 Jun; 60(2):117-25. PubMed ID: 23827744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detoxification of poly(methyl methacrylate) bone cement by natural antioxidant intervention.
    Choppadandi M; More N; Kapusetti G
    J Biomed Mater Res A; 2019 Dec; 107(12):2835-2847. PubMed ID: 31433892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of strontia on various properties of surgical simplex P acrylic bone cement and experimental variants.
    Lewis G; Xu J; Madigan S; Towler MR
    Acta Biomater; 2007 Nov; 3(6):970-9. PubMed ID: 17512808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements.
    Panzavolta S; Torricelli P; Sturba L; Bracci B; Giardino R; Bigi A
    J Biomed Mater Res A; 2008 Mar; 84(4):965-72. PubMed ID: 17647240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.
    Tsukimura N; Yamada M; Aita H; Hori N; Yoshino F; Chang-Il Lee M; Kimoto K; Jewett A; Ogawa T
    Biomaterials; 2009 Jul; 30(20):3378-89. PubMed ID: 19303139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement.
    Carlsson E; Mestres G; Treerattrakoon K; López A; Karlsson Ott M; Larsson S; Persson C
    Biomed Res Int; 2015; 2015():594284. PubMed ID: 26366415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural degradation of acrylic bone cements due to in vivo and simulated aging.
    Hughes KF; Ries MD; Pruitt LA
    J Biomed Mater Res A; 2003 May; 65(2):126-35. PubMed ID: 12734804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty.
    Calvo-Fernández T; Parra J; Fernández-Gutiérrez M; Vázquez-Lasa B; López-Bravo A; Collía F; Pérez de la Cruz MA; San Román J
    Eur Cell Mater; 2010 Oct; 20():260-73. PubMed ID: 20925024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Suggs LJ; Shive MS; Garcia CA; Anderson JM; Mikos AG
    J Biomed Mater Res; 1999 Jul; 46(1):22-32. PubMed ID: 10357132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.
    Li T; Weng X; Bian Y; Zhou L; Cui F; Qiu Z
    PLoS One; 2015; 10(6):e0129018. PubMed ID: 26039750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline.
    Vázquez B; Ginebra MP; Gil FJ; Planell JA; López Bravo A; San Román J
    Biomaterials; 1999 Nov; 20(21):2047-53. PubMed ID: 10535816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent.
    Hernández L; Fernández M; Collía F; Gurruchaga M; Goñi I
    Biomaterials; 2006 Jan; 27(1):100-7. PubMed ID: 16009418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites.
    Tripathi G; Gough JE; Dinda A; Basu B
    J Biomed Mater Res A; 2013 Jun; 101(6):1539-49. PubMed ID: 23065866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partially resorbable acrylic bone cements based on self-curing acrylic/phosphate glass formulations.
    Mendez JA; Vazquez B; Ginebra MP; Gil FJ; Manero JM; Planell JA; San Roman J
    J Appl Biomater Biomech; 2003; 1(1):48-57. PubMed ID: 20803472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of added gelatin on the properties of calcium phosphate cement.
    Bigi A; Bracci B; Panzavolta S
    Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement.
    Li ZY; Yang C; Lu WW; Xu B; Lam WM; Ni GX; Abbah SA; Yang F; Cheung KM; Luk KD
    J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):464-71. PubMed ID: 17415774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new concept for more biocompliant bone cements for vertebroplasty and kyphoplasty.
    Hu X; Zhai X; Hirt T
    Macromol Biosci; 2009 Feb; 9(2):195-202. PubMed ID: 19127603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.