BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12210094)

  • 1. Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons.
    Gitler D; Spira ME
    J Neurobiol; 2002 Sep; 52(4):267-79. PubMed ID: 12210094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons.
    Spira ME; Oren R; Dormann A; Gitler D
    J Comp Neurol; 2003 Mar; 457(3):293-312. PubMed ID: 12541311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D; Erez H; Spira ME
    Exp Neurol; 2009 Sep; 219(1):112-25. PubMed ID: 19442660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation.
    Gitler D; Spira ME
    Neuron; 1998 Jun; 20(6):1123-35. PubMed ID: 9655501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration.
    Spira ME; Oren R; Dormann A; Ilouz N; Lev S
    Cell Mol Neurobiol; 2001 Dec; 21(6):591-604. PubMed ID: 12043835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H; Malkinson G; Prager-Khoutorsky M; De Zeeuw CI; Hoogenraad CC; Spira ME
    J Cell Biol; 2007 Feb; 176(4):497-507. PubMed ID: 17283182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical ablation induces a spreading calcium-dependent, secondary pathogenesis which can be reduced by inhibiting calpain.
    Bartus RT; Chen EY; Lynch G; Kordower JH
    Exp Neurol; 1999 Feb; 155(2):315-26. PubMed ID: 10072307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection.
    Das A; Sribnick EA; Wingrave JM; Del Re AM; Woodward JJ; Appel SH; Banik NL; Ray SK
    J Neurosci Res; 2005 Aug; 81(4):551-62. PubMed ID: 15968645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium ionophore induced proteolysis and cataract: inhibition by cell permeable calpain antagonists.
    Sanderson J; Marcantonio JM; Duncan G
    Biochem Biophys Res Commun; 1996 Jan; 218(3):893-901. PubMed ID: 8579611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.
    Erez H; Spira ME
    J Comp Neurol; 2008 Mar; 507(1):1019-30. PubMed ID: 18092341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity.
    Ziv NE; Spira ME
    J Cell Biol; 1998 Jan; 140(1):223-32. PubMed ID: 9425169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calpain inhibitors alter the excitable membrane properties of cultured aplysia neurons.
    Khoutorsky A; Spira ME
    J Neurophysiol; 2008 Nov; 100(5):2784-93. PubMed ID: 18684908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones.
    Ziv NE; Spira ME
    J Neurosci; 1997 May; 17(10):3568-79. PubMed ID: 9133380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral efficacy of posttraumatic calpain inhibition is not accompanied by reduced spectrin proteolysis, cortical lesion, or apoptosis.
    Saatman KE; Zhang C; Bartus RT; McIntosh TK
    J Cereb Blood Flow Metab; 2000 Jan; 20(1):66-73. PubMed ID: 10616794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent calpain activation plays a critical role in synaptic facilitation and post-tetanic potentiation.
    Khoutorsky A; Spira ME
    Learn Mem; 2009 Feb; 16(2):129-41. PubMed ID: 19181619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of calpain-mediated cell death by a novel peptide inhibitor.
    McCollum AT; Jafarifar F; Lynn BC; Agu RU; Stinchcomb AL; Wang S; Chen Q; Guttmann RP
    Exp Neurol; 2006 Dec; 202(2):506-13. PubMed ID: 16956607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of conditions for calpain inhibition in the rat spinal cord: effective postinjury inhibition with intraspinal MDL28170 microinjection.
    Zhang SX; Bondada V; Geddes JW
    J Neurotrauma; 2003 Jan; 20(1):59-67. PubMed ID: 12614588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The involvement of calpains in opacification induced by Ca2+-overload in ovine lens culture.
    Lee HY; Morton JD; Sanderson J; Bickerstaffe R; Robertson LJ
    Vet Ophthalmol; 2008; 11(6):347-55. PubMed ID: 19046274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK.
    Chierzi S; Ratto GM; Verma P; Fawcett JW
    Eur J Neurosci; 2005 Apr; 21(8):2051-62. PubMed ID: 15869501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.