These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12210168)

  • 1. Passive electrophoresis in microchannels using liquid junction potentials.
    Munson MS; Cabrera CR; Yager P
    Electrophoresis; 2002 Aug; 23(16):2642-52. PubMed ID: 12210168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices.
    Schmuhl R; Nijdam W; Sekulić J; Chowdhury SR; van Rijn CJ; van den Berg A; ten Elshof JE; Blank DH
    Anal Chem; 2005 Jan; 77(1):178-84. PubMed ID: 15623294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample stacking revisited: a personal perspective.
    Chien RL
    Electrophoresis; 2003 Jan; 24(3):486-97. PubMed ID: 12569539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyelectrolyte-modified short microchannel for cation separation.
    Bai X; Roussel C; Jensen H; Girault HH
    Electrophoresis; 2004 Mar; 25(6):931-5. PubMed ID: 15004857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-voltage driven control in electrophoresis microchips by traveling electric field.
    Fu LM; Yang RJ
    Electrophoresis; 2003 Apr; 24(7-8):1253-60. PubMed ID: 12707919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of separation resolution through field enhancement in microchips.
    Kerby MB; Chien RL
    Electrophoresis; 2002 Oct; 23(20):3545-9. PubMed ID: 12412123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of potential distribution and the influence of ion complexation on diffusion potentials at aqueous-aqueous boundaries within a dual-stream microfluidic structure.
    Strutwolf J; Manning M; Arrigan DW
    Anal Chem; 2009 Oct; 81(20):8373-9. PubMed ID: 19769337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SDS-CGE of proteins in microchannels made of SU-8 films.
    Agirregabiria M; Blanco FJ; Berganzo J; Fullaondo A; Zubiaga AM; Mayora K; Ruano-López JM
    Electrophoresis; 2006 Sep; 27(18):3627-34. PubMed ID: 16977684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis.
    Jung B; Bharadwaj R; Santiago JG
    Electrophoresis; 2003 Oct; 24(19-20):3476-83. PubMed ID: 14595694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation for continuous analysis on microchip electrophoresis using flow-through sampling.
    Lin CC; Lee GB; Chen SH
    Electrophoresis; 2002 Oct; 23(20):3550-7. PubMed ID: 12412124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis.
    Xu ZR; Lan Y; Fan XF; Li Q
    Talanta; 2009 Apr; 78(2):448-52. PubMed ID: 19203607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line capillary electrophoresis-mass spectrometry using dopant-assisted atmospheric pressure photoionization: setup and system performance.
    Mol R; de Jong GJ; Somsen GW
    Electrophoresis; 2005 Jan; 26(1):146-54. PubMed ID: 15624178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation of background electrolytes in capillary zone electrophoresis: golden rules and pitfalls.
    Beckers JL; Bocek P
    Electrophoresis; 2003 Jan; 24(3):518-35. PubMed ID: 12569542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for capillary electrochromatography-mass spectrometry.
    Lazar IM; Li L; Yang Y; Karger BL
    Electrophoresis; 2003 Nov; 24(21):3655-62. PubMed ID: 14613190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.
    Fa K; Tulock JJ; Sweedler JV; Bohn PW
    J Am Chem Soc; 2005 Oct; 127(40):13928-33. PubMed ID: 16201814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.