These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 12210179)
1. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach. Locke BR Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179 [TBL] [Abstract][Full Text] [Related]
2. When can the Ogston-Morris-Rodbard-Chrambach model be applied to gel electrophoresis? Locke BR; Trinh SH Electrophoresis; 1999 Nov; 20(17):3331-4. PubMed ID: 10608696 [TBL] [Abstract][Full Text] [Related]
3. Mobility, diffusion and dispersion of single-stranded DNA in sequencing gels. Brahmasandra SN; Burke DT; Mastrangelo CH; Burns MA Electrophoresis; 2001 Apr; 22(6):1046-62. PubMed ID: 11358125 [TBL] [Abstract][Full Text] [Related]
4. An exactly solvable Ogston model of gel electrophoresis. II. Sieving through periodic gels. Slater GW; Guo HL Electrophoresis; 1996 Sep; 17(9):1407-15. PubMed ID: 8905255 [TBL] [Abstract][Full Text] [Related]
5. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems. Grimes BA; Liapis AI J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557 [TBL] [Abstract][Full Text] [Related]
6. Role of Joule heating in dispersive mixing effects in electrophoretic cells: convective-diffusive transport aspects. Bosse MA; Arce P Electrophoresis; 2000 Mar; 21(5):1026-33. PubMed ID: 10768790 [TBL] [Abstract][Full Text] [Related]
7. Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels. Heuer DM; Saha S; Archer LA Biopolymers; 2003 Dec; 70(4):471-81. PubMed ID: 14648758 [TBL] [Abstract][Full Text] [Related]
8. Dispersive mixing in a batch electrophoretic cell with Eyring fluids. Bosse MA; Troncoso SA; Arce PE Electrophoresis; 2002 Jul; 23(14):2157-64. PubMed ID: 12210219 [TBL] [Abstract][Full Text] [Related]
9. New insights into diffusion in 3D crowded media by Monte Carlo simulations: effect of size, mobility and spatial distribution of obstacles. Vilaseca E; Isvoran A; Madurga S; Pastor I; Garcés JL; Mas F Phys Chem Chem Phys; 2011 Apr; 13(16):7396-407. PubMed ID: 21412541 [TBL] [Abstract][Full Text] [Related]
10. Surface conductivity of colloidal particles: experimental assessment of its contributions. Jiménez ML; Arroyo FJ; Carrique F; Delgado AV J Colloid Interface Sci; 2007 Dec; 316(2):836-43. PubMed ID: 17884068 [TBL] [Abstract][Full Text] [Related]
11. Influence of cell-model boundary conditions on the conductivity and electrophoretic mobility of concentrated suspensions. Carrique F; Cuquejo J; Arroyo FJ; Jiménez ML; Delgado AV Adv Colloid Interface Sci; 2005 Dec; 118(1-3):43-50. PubMed ID: 16038867 [TBL] [Abstract][Full Text] [Related]
13. An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure. Slater GW; Guo HL Electrophoresis; 1996 Jun; 17(6):977-88. PubMed ID: 8832162 [TBL] [Abstract][Full Text] [Related]
14. An exactly solvable Ogston model of gel electrophoresis: VIII. Nonconducting gel fibers, curved field lines, and the Nernst-Einstein relation. Mercier JF; Tessier F; Slater GW Electrophoresis; 2001 Aug; 22(13):2631-8. PubMed ID: 11545385 [TBL] [Abstract][Full Text] [Related]
15. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice. Hjertén S Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839 [TBL] [Abstract][Full Text] [Related]
16. Electrophoretic collision of a DNA molecule with a small elliptical obstacle. Cho J; Kumar S; Dorfman KD Electrophoresis; 2010 Mar; 31(5):860-7. PubMed ID: 20191551 [TBL] [Abstract][Full Text] [Related]
18. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. Wang M; Pan N; Wang J; Chen S J Colloid Interface Sci; 2007 Jul; 311(2):562-70. PubMed ID: 17434521 [TBL] [Abstract][Full Text] [Related]
19. A volume averaging approach for asymmetric diffusion in porous media. Valdés-Parada FJ; Alvarez-Ramírez J J Chem Phys; 2011 May; 134(20):204709. PubMed ID: 21639469 [TBL] [Abstract][Full Text] [Related]
20. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading. Garcia AM; Frank EH; Grimshaw PE; Grodzinsky AJ Arch Biochem Biophys; 1996 Sep; 333(2):317-25. PubMed ID: 8809069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]