BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12210192)

  • 1. Monitoring of single nicks in duplex DNA by gel electrophoretic mobility-shift assay.
    Kuhn H; Protozanova E; Demidov VV
    Electrophoresis; 2002 Aug; 23(15):2384-7. PubMed ID: 12210192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacked-unstacked equilibrium at the nick site of DNA.
    Protozanova E; Yakovchuk P; Frank-Kamenetskii MD
    J Mol Biol; 2004 Sep; 342(3):775-85. PubMed ID: 15342236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-stranded breaks relax intrinsic curvature in DNA?
    Kamashev DE; Mazur AK
    Biochemistry; 2004 Jun; 43(25):8160-8. PubMed ID: 15209512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the impact of DNA damage sites on DNA duplex stability by a competitive mobility-shift assay.
    Chen MS; Laszlo A; Roti Roti J
    Anal Biochem; 2001 Nov; 298(1):121-4. PubMed ID: 11673904
    [No Abstract]   [Full Text] [Related]  

  • 5. Detection of DNA damage: effect of thymidine glycol residues on the thermodynamic, substrate and interfacial acoustic properties of oligonucleotide duplexes.
    Yang F; Romanova E; Kubareva E; Dolinnaya N; Gajdos V; Burenina O; Fedotova E; Ellis JS; Oretskaya T; Hianik T; Thompson M
    Analyst; 2009 Jan; 134(1):41-51. PubMed ID: 19082173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.
    Chernov IP; Timchenko KA; Akopov SB; Nikolaev LG; Sverdlov ED
    Anal Biochem; 2007 May; 364(1):60-6. PubMed ID: 17359930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of topological asymmetry on the electrophoretic mobility of branched DNA structures with and without single-base mismatches.
    Heuer DM; Yuan C; Saha S; Archer LA
    Electrophoresis; 2005 Jan; 26(1):64-70. PubMed ID: 15624143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of DNA bending by Fos-Jun and phased A tracts by multifactorial phasing analysis.
    Kerppola TK
    Biochemistry; 1997 Sep; 36(36):10872-84. PubMed ID: 9283077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent bending in plasmid pUC19.
    Stellwagen NC
    Electrophoresis; 2003 Oct; 24(19-20):3467-75. PubMed ID: 14595693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strand-specific contacts and divalent metal ion regulate double-strand break formation by the GIY-YIG homing endonuclease I-BmoI.
    Carter JM; Friedrich NC; Kleinstiver B; Edgell DR
    J Mol Biol; 2007 Nov; 374(2):306-21. PubMed ID: 17936302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific recognition of double-stranded DNA by cooperative strand invasion.
    Sugiyama T; Imamura Y; Hakamata W; Kurihara M; Kittaka A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):157-8. PubMed ID: 17150865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrophoretic mobility of DNA three-way junctions is affected by the sequence of overhanging single-stranded ends.
    Assenberg R; Fox KR
    Electrophoresis; 2001 Feb; 22(3):413-7. PubMed ID: 11258747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic mobility-shift assays.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):636-9. PubMed ID: 23818676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes.
    Jing D; Beechem JM; Patton WF
    Electrophoresis; 2004 Aug; 25(15):2439-46. PubMed ID: 15300760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical permutation gel electrophoretic analysis of a curved DNA fragment located in circular permutation.
    Nair TM; Madhusudan K; Nagaraja V; Kulkarni BD; Majumdar HK; Singh R
    Electrophoresis; 1996 Apr; 17(4):633-41. PubMed ID: 8738320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of branch length asymmetry on the electrophoretic mobility of rigid rod-like DNA.
    Heuer DM; Saha S; Kusumo AT; Archer LA
    Electrophoresis; 2004 Jun; 25(12):1772-83. PubMed ID: 15213975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitating oligonucleotide affinities for duplex DNA: footprinting vs electrophoretic mobility shift assays.
    Ferber MJ; Maher LJ
    Anal Biochem; 1997 Jan; 244(2):312-20. PubMed ID: 9025948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor binding study by capillary zone electrophoretic mobility shift assay.
    Ronai Z; Wang Y; Khandurina J; Budworth P; Sasvari-Szekely M; Wang X; Guttman A
    Electrophoresis; 2003 Jan; 24(1-2):96-100. PubMed ID: 12652578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercalation into the DNA double helix and in vivo biological activity of water-soluble planar [Pt(diimine)(N,N-dihydroxyethyl-N'-benzoylthioureato)]+Cl- complexes: a study of their thermal stability, their CD spectra and their gel mobility.
    Wu YS; Koch KR; Abratt VR; Klump HH
    Arch Biochem Biophys; 2005 Aug; 440(1):28-37. PubMed ID: 16009327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.