These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12210532)

  • 1. Radiation-induced chromosome aberrations: insights gained from biophysical modeling.
    Hlatky L; Sachs RK; Vazquez M; Cornforth MN
    Bioessays; 2002 Aug; 24(8):714-23. PubMed ID: 12210532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin.
    Pantelias GE; Terzoudi GI
    Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA damage processing and aberration formation in plants.
    Schubert I; Pecinka A; Meister A; Schubert V; Klatte M; Jovtchev G
    Cytogenet Genome Res; 2004; 104(1-4):104-8. PubMed ID: 15162022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.
    Friedland W; Kundrát P
    Mutat Res; 2013 Aug; 756(1-2):213-23. PubMed ID: 23811166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: proximity effects in the production of chromosome aberrations by ionizing radiation.
    Sachs RK; Chen AM; Brenner DJ
    Int J Radiat Biol; 1997 Jan; 71(1):1-19. PubMed ID: 9020958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry.
    Sachs RK; Levy D; Chen AM; Simpson PJ; Cornforth MN; Ingerman EA; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Dec; 76(12):1579-88. PubMed ID: 11133039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting chromosome aberration spectra.
    Levy D; Reeder C; Loucas B; Hlatky L; Chen A; Cornforth M; Sachs R
    J Comput Biol; 2007 Mar; 14(2):144-55. PubMed ID: 17456013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on chromosome aberration induction: what can they tell us about DNA repair?
    Bailey SM; Bedford JS
    DNA Repair (Amst); 2006 Sep; 5(9-10):1171-81. PubMed ID: 16814619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-arm and interarm chromosome intrachanges: tools for probing the geometry and dynamics of chromatin.
    Sachs RK; Brenner DJ; Chen AM; Hahnfeldt P; Hlatky LR
    Radiat Res; 1997 Oct; 148(4):330-40. PubMed ID: 9339949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation induced chromosome aberrations: some biophysical considerations.
    Chadwick KH; Leenhouts HP
    Mutat Res; 1998 Aug; 404(1-2):113-7. PubMed ID: 9729318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].
    Eĭdel'man IuA; Slanina SV; Sal'nikov IV; Andreev SG
    Genetika; 2012 Dec; 48(12):1427-36. PubMed ID: 23516904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-induced damage, repair and exchange formation in different chromosomes of human fibroblasts determined by fluorescence in situ hybridization.
    Kovacs MS; Evans JW; Johnstone IM; Brown JM
    Radiat Res; 1994 Jan; 137(1):34-43. PubMed ID: 8265786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of DNA-dependent protein kinase in the process of radiation-induced aberration formation.
    Virsik-Köpp P; Rave-Fränk M; Hofman-Hüther H; Schmidberger H
    Int J Radiat Biol; 2004 Feb; 80(2):125-33. PubMed ID: 15164794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rejoining and misrejoining of radiation-induced chromatin breaks. II. Biophysical Model.
    Wu H; Durante M; George K; Goodwin EH; Yang TC
    Radiat Res; 1996 Mar; 145(3):281-8. PubMed ID: 8927695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair and chromosomal damage.
    Bryant PE
    Radiother Oncol; 2004 Sep; 72(3):251-6. PubMed ID: 15450722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer analysis of mFISH chromosome aberration data uncovers an excess of very complicated metaphases.
    Vazquez M; Greulich-Bode KM; Arsuaga J; Cornforth MN; Brückner M; Sachs RK; Hlatky L; Molls M; Hahnfeldt P
    Int J Radiat Biol; 2002 Dec; 78(12):1103-15. PubMed ID: 12556338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells.
    Ponomarev AL; George K; Cucinotta FA
    Radiat Res; 2014 Mar; 181(3):284-92. PubMed ID: 24611656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.