These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1030 related articles for article (PubMed ID: 12210598)
1. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma. Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598 [TBL] [Abstract][Full Text] [Related]
2. Nanosecond, high-intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near-infrared wavelengths: in-vitro study. Sato S; Ogura M; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Obara M; Kikuchi M; Ashida H Lasers Surg Med; 2001; 29(5):464-73. PubMed ID: 11891735 [TBL] [Abstract][Full Text] [Related]
3. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue. Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010 [TBL] [Abstract][Full Text] [Related]
5. Acute and chronic effects of transmyocardial laser revascularization in the nonischemic pig myocardium by using three laser systems. Genyk IA; Frenz M; Ott B; Walpoth BH; Schaffner T; Carrel TP Lasers Surg Med; 2000; 27(5):438-50. PubMed ID: 11126438 [TBL] [Abstract][Full Text] [Related]
6. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm. Kang HW; Kim J; Peng YS Lasers Surg Med; 2010 Mar; 42(3):237-44. PubMed ID: 20333741 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993 [TBL] [Abstract][Full Text] [Related]
8. Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses. Gorbatov M; Miller J; Yu PK; Cringle SJ; Yu DY Exp Eye Res; 2010 Aug; 91(2):257-63. PubMed ID: 20510242 [TBL] [Abstract][Full Text] [Related]
9. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment. Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967 [TBL] [Abstract][Full Text] [Related]
10. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses. Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676 [TBL] [Abstract][Full Text] [Related]
11. Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination. Meister J; Franzen R; Gavenis K; Zaum M; Stanzel S; Gutknecht N; Schmidt-Rohlfing B Lasers Surg Med; 2009 Nov; 41(9):674-85. PubMed ID: 19802892 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigations on relationships between myocardial damage and laser type used in transmyocardial laser revascularization (TMLR). Kitade T; Okada M; Tsuji Y; Nakamura M; Matoba Y Kobe J Med Sci; 1999 Aug; 45(3-4):127-36. PubMed ID: 10752307 [TBL] [Abstract][Full Text] [Related]
13. Excimer laser (308 nm) based transmyocardial laser revascularization: effects of the lasing parameters on myocardial histology. Shehada RE; Papaioannou T; Mansour HN; Grundfest WS Lasers Surg Med; 2001; 29(1):85-91. PubMed ID: 11500869 [TBL] [Abstract][Full Text] [Related]
14. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser. Fried D; Featherstone JD; Le CQ; Fan K Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095 [TBL] [Abstract][Full Text] [Related]
15. Ablation of intraocular tissue with fiber-optic probe-delivered 266-nm and 213-nm laser energy. Yu XB; Miller J; Yu PK; Cringle SJ; Balaratnasingam C; Morgan WH; Yu DY Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3729-36. PubMed ID: 19339743 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Er:YAG and 9.6-microm TE CO(2) lasers for ablation of skull tissue. Fried NM; Fried D Lasers Surg Med; 2001; 28(4):335-43. PubMed ID: 11344514 [TBL] [Abstract][Full Text] [Related]
17. Histologic evaluation of interstitial lipolysis comparing a 1064, 1320 and 2100 nm laser in an ex vivo model. Khoury JG; Saluja R; Keel D; Detwiler S; Goldman MP Lasers Surg Med; 2008 Aug; 40(6):402-6. PubMed ID: 18649385 [TBL] [Abstract][Full Text] [Related]
18. Pathomorphological and histological analysis of the indirect revascularization method. Lutter G; Martin J; Riede UN; Esenwein P; Bitu-Moreno J; Beyersdorf F Thorac Cardiovasc Surg; 2000 Oct; 48(5):255-62. PubMed ID: 11100756 [TBL] [Abstract][Full Text] [Related]
19. Comparison of thermal tissue effects induced by contact application of fiber guided laser systems. Janda P; Sroka R; Mundweil B; Betz CS; Baumgartner R; Leunig A Lasers Surg Med; 2003; 33(2):93-101. PubMed ID: 12913880 [TBL] [Abstract][Full Text] [Related]
20. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses. Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]