BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 12210837)

  • 81. Loss of the actin regulator cyclase-associated protein 1 (CAP1) modestly affects dendritic spine remodeling during synaptic plasticity.
    Heinze A; Rust MB
    Eur J Cell Biol; 2023 Dec; 102(4):151357. PubMed ID: 37634312
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Persistence of excitatory shaft synapses adjacent to newly emerged dendritic protrusions.
    Reilly JE; Hanson HH; Phillips GR
    Mol Cell Neurosci; 2011 Oct; 48(2):129-36. PubMed ID: 21784157
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Actin capping protein is required for dendritic spine development and synapse formation.
    Fan Y; Tang X; Vitriol E; Chen G; Zheng JQ
    J Neurosci; 2011 Jul; 31(28):10228-33. PubMed ID: 21752999
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity.
    Lei W; Myers KR; Rui Y; Hladyshau S; Tsygankov D; Zheng JQ
    J Cell Biol; 2017 Aug; 216(8):2551-2564. PubMed ID: 28659327
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation.
    Bilousova TV; Rusakov DA; Ethell DW; Ethell IM
    J Neurochem; 2006 Apr; 97(1):44-56. PubMed ID: 16515559
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.
    Bhuiyan MMH; Haque MN; Mohibbullah M; Kim YK; Moon IS
    J Ethnopharmacol; 2017 Sep; 209():100-107. PubMed ID: 28734961
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nectin: an adhesion molecule involved in formation of synapses.
    Mizoguchi A; Nakanishi H; Kimura K; Matsubara K; Ozaki-Kuroda K; Katata T; Honda T; Kiyohara Y; Heo K; Higashi M; Tsutsumi T; Sonoda S; Ide C; Takai Y
    J Cell Biol; 2002 Feb; 156(3):555-65. PubMed ID: 11827984
    [TBL] [Abstract][Full Text] [Related]  

  • 88. F-actin-dependent regulation of NESH dynamics in rat hippocampal neurons.
    Bae J; Sung BH; Cho IH; Song WK
    PLoS One; 2012; 7(4):e34514. PubMed ID: 22496823
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Estimation of numerical density and mean synaptic height in chick hippocampus 24 and 48 hours after passive avoidance training.
    Unal B; Bradley PM; Sahin B; Canan S; Aslan H; Kaplan S
    Brain Res Dev Brain Res; 2002 Jun; 136(2):135-44. PubMed ID: 12101030
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Rapid actin-based plasticity in dendritic spines.
    Fischer M; Kaech S; Knutti D; Matus A
    Neuron; 1998 May; 20(5):847-54. PubMed ID: 9620690
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin.
    Halpain S; Hipolito A; Saffer L
    J Neurosci; 1998 Dec; 18(23):9835-44. PubMed ID: 9822742
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins.
    Derouiche A; Frotscher M
    Glia; 2001 Dec; 36(3):330-41. PubMed ID: 11746770
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Control of growth cone motility and neurite outgrowth by SPIN90.
    Kim SM; Bae J; Cho IH; Choi KY; Park YJ; Ryu JH; Chun JS; Song WK
    Exp Cell Res; 2011 Oct; 317(16):2276-87. PubMed ID: 21763308
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo.
    Fukazawa Y; Saitoh Y; Ozawa F; Ohta Y; Mizuno K; Inokuchi K
    Neuron; 2003 May; 38(3):447-60. PubMed ID: 12741991
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels.
    Schreiber J; Végh MJ; Dawitz J; Kroon T; Loos M; Labonté D; Li KW; Van Nierop P; Van Diepen MT; De Zeeuw CI; Kneussel M; Meredith RM; Smit AB; Van Kesteren RE
    J Cell Biol; 2015 Nov; 211(3):569-86. PubMed ID: 26527743
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus.
    Eagleson KL; Milner TA; Xie Z; Levitt P
    J Comp Neurol; 2013 Oct; 521(14):3241-59. PubMed ID: 23787772
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Ethanol inhibits development of dendrites and synapses in rat hippocampal pyramidal neuron cultures.
    Yanni PA; Lindsley TA
    Brain Res Dev Brain Res; 2000 Apr; 120(2):233-43. PubMed ID: 10775775
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons.
    Harrill JA; Chen H; Streifel KM; Yang D; Mundy WR; Lein PJ
    Mol Brain; 2015 Feb; 8():10. PubMed ID: 25757474
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines.
    Chazeau A; Garcia M; Czöndör K; Perrais D; Tessier B; Giannone G; Thoumine O
    Mol Biol Cell; 2015 Mar; 26(5):859-73. PubMed ID: 25568337
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization.
    Shi Y; Ethell IM
    J Neurosci; 2006 Feb; 26(6):1813-22. PubMed ID: 16467530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.