These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12210910)

  • 21. Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI.
    Wang N; Xia Y
    J Magn Reson; 2013 Oct; 235():15-25. PubMed ID: 23916991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI).
    Xia Y; Ramakrishnan N; Bidthanapally A
    Osteoarthritis Cartilage; 2007 Jul; 15(7):780-8. PubMed ID: 17317225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Averaged and depth-dependent anisotropy of articular cartilage by microscopic imaging.
    Xia Y
    Semin Arthritis Rheum; 2008 Apr; 37(5):317-27. PubMed ID: 17888496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of partial H2O-D2O replacement on the anisotropy of transverse proton spin relaxation in bovine articular cartilage.
    Tadimalla S; Momot KI
    PLoS One; 2014; 9(12):e115288. PubMed ID: 25545955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage.
    Rubenstein JD; Kim JK; Morova-Protzner I; Stanchev PL; Henkelman RM
    Radiology; 1993 Jul; 188(1):219-26. PubMed ID: 8511302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interface region between articular cartilage and bone by μMRI and PLM at microscopic resolutions.
    Badar F; Xia Y
    Microsc Res Tech; 2022 Apr; 85(4):1483-1493. PubMed ID: 34859542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropy of spin relaxation of water protons in cartilage and tendon.
    Momot KI; Pope JM; Wellard RM
    NMR Biomed; 2010 Apr; 23(3):313-24. PubMed ID: 20013798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loading-induced changes on topographical distributions of the zonal properties of osteoarthritic tibial cartilage--A study by magnetic resonance imaging at microscopic resolution.
    Lee JH; Badar F; Kahn D; Matyas J; Qu X; Xia Y
    J Biomech; 2015 Oct; 48(13):3625-33. PubMed ID: 26351010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longitudinal analysis of MR spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age.
    Wirth W; Eckstein F; Boeth H; Diederichs G; Hudelmaier M; Duda GN
    Osteoarthritis Cartilage; 2014 Oct; 22(10):1554-8. PubMed ID: 25278064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depth and orientational dependencies of MRI T(2) and T(1ρ) sensitivities towards trypsin degradation and Gd-DTPA(2-) presence in articular cartilage at microscopic resolution.
    Wang N; Xia Y
    Magn Reson Imaging; 2012 Apr; 30(3):361-70. PubMed ID: 22244543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure.
    Shinar H; Navon G
    NMR Biomed; 2006 Nov; 19(7):877-93. PubMed ID: 17075957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage.
    Ramakrishnan N; Xia Y; Bidthanapally A
    J Orthop Surg Res; 2008 Oct; 3():48. PubMed ID: 18837979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].
    Liao H; Yu W; Wang W; Liao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 35(10):1064-72. PubMed ID: 21051831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneity of cartilage laminae in MR imaging.
    Xia Y
    J Magn Reson Imaging; 2000 Jun; 11(6):686-93. PubMed ID: 10862069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of phosphate electrolyte buffer on the dynamics of water in tendon and cartilage.
    Zheng S; Xia Y
    NMR Biomed; 2009 Feb; 22(2):158-64. PubMed ID: 18720450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique.
    Gründer W; Wagner M; Werner A
    Magn Reson Med; 1998 Mar; 39(3):376-82. PubMed ID: 9498593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Morphology of Rabbit Patella and Suprapatella Cartilage by Microscopic MRI and Polarized Light Microscopy.
    Mantebea H; Batool S; Hammami M; Xia Y
    Cartilage; 2021 Dec; 13(2_suppl):356S-366S. PubMed ID: 33550833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the fiber orientation in articular cartilage at rest and under pressure studied by 2H double quantum filtered MRI.
    Shinar H; Seo Y; Ikoma K; Kusaka Y; Eliav U; Navon G
    Magn Reson Med; 2002 Aug; 48(2):322-30. PubMed ID: 12210941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influences of different spatial resolutions on the characteristics of T2 relaxation times in articular cartilage: A coarse-graining study of the microscopic magnetic resonance imaging data.
    Zhuang Z; Lee JH; Badar F; Xu J; Xia Y
    Microsc Res Tech; 2016 Aug; 79(8):754-65. PubMed ID: 27297720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.