These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12210952)

  • 1. Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator.
    Alecci M; Jezzard P
    Magn Reson Med; 2002 Aug; 48(2):404-7. PubMed ID: 12210952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.
    Zhao Y; Zhao T; Raval SB; Krishnamurthy N; Zheng H; Harris CT; Handler WB; Chronik BA; Ibrahim TS
    Magn Reson Med; 2015 Nov; 74(5):1461-9. PubMed ID: 25367703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RF shielding designs for birdcage coils for preclinical MRI at 9.4 T.
    Yang Z; Lu M; Drake G; Wang F; Yang PF; Chen LM; Gore JC; Yan X
    Magn Reson Imaging; 2022 Dec; 94():1-6. PubMed ID: 36075493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI.
    Ha S; Hamamura MJ; Roeck WW; Muftuler LT; Nalcioglu O
    Phys Med Biol; 2010 May; 55(9):2495-504. PubMed ID: 20371909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.
    Robitaille PM
    J Comput Assist Tomogr; 1999; 23(6):879-90. PubMed ID: 10589562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-cost, mechanically simple apparatus for measuring eddy current-induced magnetic fields in MRI.
    Gilbert KM; Martyn Klassen L; Menon RS
    NMR Biomed; 2013 Oct; 26(10):1285-90. PubMed ID: 23526761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low eddy current RF shielding enclosure designs for 3T MR applications.
    Lee BJ; Watkins RD; Chang CM; Levin CS
    Magn Reson Med; 2018 Mar; 79(3):1745-1752. PubMed ID: 28585334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.
    Bidinosti CP; Kravchuk IS; Hayden ME
    J Magn Reson; 2005 Nov; 177(1):31-43. PubMed ID: 16099186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamaterial-Inspired Radiofrequency (RF) Shield With Reduced Specific Absorption Rate (SAR) and Improved Transmit Efficiency for UHF MRI.
    Chen H; Guo L; Li M; Destruel A; Liu C; Weber E; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1178-1189. PubMed ID: 32903175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry optimization of electrically floating PET inserts for improved RF penetration for a 3 T MRI system.
    Akram MSH; Levin CS; Obata T; Hirumi G; Yamaya T
    Med Phys; 2018 Oct; 45(10):4627-4641. PubMed ID: 30118140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth study of the electromagnetics of ultrahigh-field MRI.
    Ibrahim TS; Mitchell C; Abraham R; Schmalbrock P
    NMR Biomed; 2007 Feb; 20(1):58-68. PubMed ID: 17006885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A birdcage coil tuned by RF shielding for application at 9.4 T.
    Dardzinski BJ; Li S; Collins CM; Williams GD; Smith MB
    J Magn Reson; 1998 Mar; 131(1):32-8. PubMed ID: 9533903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New shielding configurations for a simultaneous PET/MRI scanner at 7T.
    Peng BJ; Wu Y; Cherry SR; Walton JH
    J Magn Reson; 2014 Feb; 239():50-6. PubMed ID: 24380812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla.
    Ibrahim TS; Mitchell C; Schmalbrock P; Lee R; Chakeres DW
    Magn Reson Med; 2005 Sep; 54(3):683-90. PubMed ID: 16088934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a local electromagnetic shielding for an extremity magnetic resonance imaging system.
    Handa S; Haishi T; Kose K
    Rev Sci Instrum; 2008 Nov; 79(11):113706. PubMed ID: 19045894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization methods for comprehensive evaluations of shielding materials used in an MRI.
    Gross-Weege N; Dey T; Gebhardt P; Schug D; Weissler B; Schulz V
    Med Phys; 2018 Apr; 45(4):1415-1424. PubMed ID: 29363769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-field head radiofrequency volume coils using transverse electromagnetic (TEM) and phased array technologies.
    Avdievich NI; Hetherington HP
    NMR Biomed; 2009 Nov; 22(9):960-74. PubMed ID: 18574792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI.
    Zhao Y; Xiao L; Liu Y; Leong AT; Wu EX
    NMR Biomed; 2024 Jul; 37(7):e4956. PubMed ID: 37088894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A time-harmonic inverse methodology for the design of RF coils in MRI.
    Lawrence BG; Crozier S; Yau DD; Doddrell DM
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):64-71. PubMed ID: 11794773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radio frequency shielding for a linac-MRI system.
    Lamey M; Burke B; Blosser E; Rathee S; De Zanche N; Fallone BG
    Phys Med Biol; 2010 Feb; 55(4):995-1006. PubMed ID: 20090181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.