BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 12211026)

  • 1. Completion and refinement of 3-D homology models with restricted molecular dynamics: application to targets 47, 58, and 111 in the CASP modeling competition and posterior analysis.
    Flohil JA; Vriend G; Berendsen HJ
    Proteins; 2002 Sep; 48(4):593-604. PubMed ID: 12211026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
    Berndt KD; Güntert P; Wüthrich K
    Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein folding in mode space: a collective coordinate approach to structure prediction.
    Abseher R; Nilges M
    Proteins; 2002 Nov; 49(3):365-77. PubMed ID: 12360526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent.
    Kannan S; Zacharias M
    Proteins; 2010 Oct; 78(13):2809-19. PubMed ID: 20635348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated method for modeling proteins on known templates using distance geometry.
    Srinivasan S; March CJ; Sudarsanam S
    Protein Sci; 1993 Feb; 2(2):277-89. PubMed ID: 8443604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence.
    Hariharan R; Pillai MR
    Proteins; 2008 Jun; 71(4):1853-62. PubMed ID: 18175316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of TASSER-based CASP7 protein structure prediction results.
    Zhou H; Pandit SB; Lee SY; Borreguero J; Chen H; Wroblewska L; Skolnick J
    Proteins; 2007; 69 Suppl 8():90-7. PubMed ID: 17705276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a move-set for protein model refinement.
    Offman MN; Fitzjohn PW; Bates PA
    Bioinformatics; 2006 Aug; 22(15):1838-45. PubMed ID: 16705011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recoverable one-dimensional encoding of three-dimensional protein structures.
    Kinjo AR; Nishikawa K
    Bioinformatics; 2005 May; 21(10):2167-70. PubMed ID: 15722374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence comparison and protein structure prediction.
    Dunbrack RL
    Curr Opin Struct Biol; 2006 Jun; 16(3):374-84. PubMed ID: 16713709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
    Raval A; Piana S; Eastwood MP; Dror RO; Shaw DE
    Proteins; 2012 Aug; 80(8):2071-9. PubMed ID: 22513870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
    Kosinski J; Cymerman IA; Feder M; Kurowski MA; Sasin JM; Bujnicki JM
    Proteins; 2003; 53 Suppl 6():369-79. PubMed ID: 14579325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid knot detection and application to protein structure prediction.
    Khatib F; Weirauch MT; Rohl CA
    Bioinformatics; 2006 Jul; 22(14):e252-9. PubMed ID: 16873480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method for protein secondary structure assignment based on a simple topological descriptor.
    Taylor T; Rivera M; Wilson G; Vaisman II
    Proteins; 2005 Aug; 60(3):513-24. PubMed ID: 15887224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient conformational sampling method for homology modeling.
    Han R; Leo-Macias A; Zerbino D; Bastolla U; Contreras-Moreira B; Ortiz AR
    Proteins; 2008 Apr; 71(1):175-88. PubMed ID: 17985353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein structure prediction constrained by solution X-ray scattering data and structural homology identification.
    Zheng W; Doniach S
    J Mol Biol; 2002 Feb; 316(1):173-87. PubMed ID: 11829511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.