BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 12211028)

  • 21. Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide.
    Yoshimi T; Hongo K; Mizobata T; Kawata Y
    J Biochem; 2006 Mar; 139(3):407-19. PubMed ID: 16567406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings.
    Kad NM; Ranson NA; Cliff MJ; Clarke AR
    J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes in the GroEL oligomer during the functional cycle.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    J Struct Biol; 1997 Feb; 118(1):31-42. PubMed ID: 9087913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR analysis of a 900K GroEL GroES complex.
    Fiaux J; Bertelsen EB; Horwich AL; Wüthrich K
    Nature; 2002 Jul; 418(6894):207-11. PubMed ID: 12110894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.
    Kovács E; Sun Z; Liu H; Scott DJ; Karsisiotis AI; Clarke AR; Burston SG; Lund PA
    J Mol Biol; 2010 Mar; 396(5):1271-83. PubMed ID: 20006619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring.
    van Duijn E; Simmons DA; van den Heuvel RH; Bakkes PJ; van Heerikhuizen H; Heeren RM; Robinson CV; van der Vies SM; Heck AJ
    J Am Chem Soc; 2006 Apr; 128(14):4694-702. PubMed ID: 16594706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the structure of GroES and its interaction with GroEL.
    Valencia A; Hubbard TJ; Muga A; Bañuelos S; Llorca O; Carrascosa JL; Valpuesta JM
    Proteins; 1995 Jul; 22(3):199-209. PubMed ID: 7479694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL.
    Yifrach O; Horovitz A
    Biochemistry; 1998 May; 37(20):7083-8. PubMed ID: 9585518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphofructokinase interacts with molecular chaperonins GroEL and GroES.
    Melegh B; Minami Y
    Acta Biol Hung; 1997; 48(4):399-407. PubMed ID: 9847453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dynamic model for the allosteric mechanism of GroEL.
    Ma J; Sigler PB; Xu Z; Karplus M
    J Mol Biol; 2000 Sep; 302(2):303-13. PubMed ID: 10970735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a GroES (CPN10)-related sequence motif in the GroEL (CPN60) chaperonins.
    Gupta RS
    Biochem Mol Biol Int; 1994 Jun; 33(3):591-5. PubMed ID: 7951076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residue lysine-34 in GroES modulates allosteric transitions in GroEL.
    Kovalenko O; Yifrach O; Horovitz A
    Biochemistry; 1994 Dec; 33(50):14974-8. PubMed ID: 7999753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the stability of an SR398/GroES chaperonin complex.
    Ishino S; Kawata Y; Ikegami T; Matsuzaki K; Hoshino M
    J Biochem; 2014 May; 155(5):295-300. PubMed ID: 24563543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL.
    Bandyopadhyay B; Goldenzweig A; Unger T; Adato O; Fleishman SJ; Unger R; Horovitz A
    J Biol Chem; 2017 Dec; 292(50):20583-20591. PubMed ID: 29066625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
    Shimamura T; Koike-Takeshita A; Yokoyama K; Masui R; Murai N; Yoshida M; Taguchi H; Iwata S
    Structure; 2004 Aug; 12(8):1471-80. PubMed ID: 15296740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociation of the GroEL-GroES asymmetric complex is accelerated by increased cooperativity in ATP binding to the GroEL ring distal to GroES.
    Fridmann Y; Kafri G; Danziger O; Horovitz A
    Biochemistry; 2002 May; 41(18):5938-44. PubMed ID: 11980498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of amino acid residues at nucleotide-binding sites of chaperonin GroEL/GroES and cpn10 by photoaffinity labeling with 2-azido-adenosine 5'-triphosphate.
    Bramhall EA; Cross RL; Rospert S; Steede NK; Landry SJ
    Eur J Biochem; 1997 Mar; 244(2):627-34. PubMed ID: 9119033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.