These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 12211103)

  • 1. Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments.
    Fernández J; Cantillana V; Ubilla A
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):214-30. PubMed ID: 12211103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex dynamic network of microtubule and microfilament cytasters of the leech zygote.
    Cantillana V; Urrutia M; Ubilla A; Fernández J
    Dev Biol; 2000 Dec; 228(1):136-49. PubMed ID: 11087633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal and video imaging of cytoskeleton dynamics in the leech zygote.
    Fernández J; Toro J; Ubilla A
    Dev Biol; 2004 Jul; 271(1):59-74. PubMed ID: 15196950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.
    Bianchi MG; Rotoli BM; Dall'Asta V; Gazzola GC; Gatti R; Bussolati O
    Neurochem Int; 2006 Apr; 48(5):341-9. PubMed ID: 16417946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos.
    Rivera RM; Kelley KL; Erdos GW; Hansen PJ
    Biol Reprod; 2004 Jun; 70(6):1852-62. PubMed ID: 14960486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of the female pronucleus and reorganization and disassembly of the first interphase cytoskeleton in the egg of the glossiphoniid leech Theromyzon rude.
    Fernandez J; Olea N
    Dev Biol; 1995 Oct; 171(2):541-53. PubMed ID: 7556935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton.
    Mundy DI; Machleidt T; Ying YS; Anderson RG; Bloom GS
    J Cell Sci; 2002 Nov; 115(Pt 22):4327-39. PubMed ID: 12376564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.
    Sampathkumar A; Lindeboom JJ; Debolt S; Gutierrez R; Ehrhardt DW; Ketelaar T; Persson S
    Plant Cell; 2011 Jun; 23(6):2302-13. PubMed ID: 21693695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid.
    Foissner I; Grolig F; Obermeyer G
    Protoplasma; 2002 Oct; 220(1-2):1-15. PubMed ID: 12417932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of polar cytoplasmic domains (teloplasms) in the leech egg is a three-step segregation process.
    Fernandez J; Olea N; Ubilla A; Cantillana V
    Int J Dev Biol; 1998 Mar; 42(2):149-62. PubMed ID: 9551860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons.
    Ligon LA; Steward O
    J Comp Neurol; 2000 Nov; 427(3):351-61. PubMed ID: 11054698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin promotes formation of polymerized microtubules by a phosphatidylinositol 3-kinase-independent, actin-dependent pathway in 3T3-L1 adipocytes.
    Olson AL; Eyster CA; Duggins QS; Knight JB
    Endocrinology; 2003 Nov; 144(11):5030-9. PubMed ID: 12959978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.).
    Blancaflor EB
    J Plant Growth Regul; 2000 Dec; 19(4):406-14. PubMed ID: 11762380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading.
    Zimerman B; Volberg T; Geiger B
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):143-59. PubMed ID: 15146534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo.
    Townsley FM; Bienz M
    Curr Biol; 2000 Nov; 10(21):1339-48. PubMed ID: 11084333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.