These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12211108)

  • 1. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2002 Oct; 53(2):103-24. PubMed ID: 12211108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of flagellar movement: VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1999; 42(2):134-48. PubMed ID: 10215423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
    Wargo MJ; McPeek MA; Smith EF
    J Cell Sci; 2004 May; 117(Pt 12):2533-44. PubMed ID: 15128866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the curvature of the flagellum involved in the apparent cooperativity of the dynein arms along the "9+2" axoneme?
    Cibert C; Ludu A
    J Theor Biol; 2010 Jul; 265(2):95-103. PubMed ID: 20399794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thinking about flagellar oscillation.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2009 Aug; 66(8):425-36. PubMed ID: 18828155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm--roles of Ca2+ and ADP.
    Hayashi S; Shingyoji C
    Cell Motil Cytoskeleton; 2009 May; 66(5):292-301. PubMed ID: 19343792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.
    Brokaw CJ
    Biophys J; 1985 Oct; 48(4):633-42. PubMed ID: 3840393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force.
    Hayashibe K; Shingyoji C; Kamiya R
    Cell Motil Cytoskeleton; 1997; 37(3):232-9. PubMed ID: 9227853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are the local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the "9+2" axoneme?
    Cibert C
    J Theor Biol; 2008 Jul; 253(1):74-89. PubMed ID: 18405921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of flagellar oscillation-bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm.
    Hayashi S; Shingyoji C
    J Cell Sci; 2008 Sep; 121(Pt 17):2833-43. PubMed ID: 18682495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation.
    Wirschell M; Hendrickson T; Sale WS
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The many modes of flagellar and ciliary beating: Insights from a physical analysis.
    Lindemann CB; Lesich KA
    Cytoskeleton (Hoboken); 2021 Feb; 78(2):36-51. PubMed ID: 33675288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model.
    Lindemann CB
    Cell Motil Cytoskeleton; 1996; 34(4):258-70. PubMed ID: 8871813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of the passive sea urchin sperm flagellum.
    Pelle DW; Brokaw CJ; Lesich KA; Lindemann CB
    Cell Motil Cytoskeleton; 2009 Sep; 66(9):721-35. PubMed ID: 19536829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of bend propagation by axoplasmic microtubules.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1986; 6(3):347-53. PubMed ID: 2427228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry drives the "deviated-bending" of the bi-tubular structures of the 9 + 2 axoneme in the flagellum.
    Cibert C; Heck JV
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):153-68. PubMed ID: 15368611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.