These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12211276)

  • 1. Soft tissue movement and stress shielding do not affect bone ingrowth in the bone conduction chamber.
    van der Donk S; Verdonschot N; Schreurs BW; Buma P
    Comp Med; 2002 Aug; 52(4):328-31. PubMed ID: 12211276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity of bone ingrowth in rats and goats: a bone chamber study.
    van der Donk S; Buma P; Aspenberg P; Schreurs BW
    Comp Med; 2001 Aug; 51(4):336-40. PubMed ID: 11924792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a large titanium bone chamber to study in vivo bone ingrowth.
    Hannink G; Aspenberg P; Schreurs BW; Buma P
    Biomaterials; 2006 Mar; 27(9):1810-6. PubMed ID: 16307797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in bone ingrowth after one versus two daily episodes of micromotion: experiments with titanium chambers in rabbits.
    Goodman S; Wang JS; Doshi A; Aspenberg P
    J Biomed Mater Res; 1993 Nov; 27(11):1419-24. PubMed ID: 8263004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles.
    Goodman SB; Song Y; Yoo JY; Fox N; Trindade MC; Kajiyama G; Ma T; Regula D; Brown J; Smith RL
    J Biomed Mater Res A; 2003 Jun; 65(4):454-61. PubMed ID: 12761835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic fibroblast growth factor promotes bone ingrowth in porous hydroxyapatite.
    Wang JS; Aspenberg P
    Clin Orthop Relat Res; 1996 Dec; (333):252-60. PubMed ID: 8981904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm.
    Liu X; Niebur GL
    Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation in the presence of phagocytosable hydroxyapatite particles.
    Wang JS; Goodman S; Aspenberg P
    Clin Orthop Relat Res; 1994 Jul; (304):272-9. PubMed ID: 8020228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on the effect of movement on bone ingrowth into porous-surfaced implants.
    Pilliar RM; Lee JM; Maniatopoulos C
    Clin Orthop Relat Res; 1986 Jul; (208):108-13. PubMed ID: 3720113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No positive effects of OP-1 device on the incorporation of impacted graft materials after 8 weeks: a bone chamber study in goats.
    Hannink G; Schreurs BW; Buma P
    Acta Orthop; 2007 Aug; 78(4):551-8. PubMed ID: 17966011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment.
    Frenkel SR; Simon J; Alexander H; Dennis M; Ricci JL
    J Biomed Mater Res; 2002; 63(6):706-13. PubMed ID: 12418014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs.
    Jung RE; Lecloux G; Rompen E; Ramel CF; Buser D; Hammerle CH
    Clin Oral Implants Res; 2009 Feb; 20(2):151-61. PubMed ID: 19191792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone ingrowth simulation for a concept glenoid component design.
    Andreykiv A; Prendergast PJ; van Keulen F; Swieszkowski W; Rozing PM
    J Biomech; 2005 May; 38(5):1023-33. PubMed ID: 15797584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants.
    Duyck J; Vandamme K; Geris L; Van Oosterwyck H; De Cooman M; Vandersloten J; Puers R; Naert I
    Arch Oral Biol; 2006 Jan; 51(1):1-9. PubMed ID: 15922992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of bone ingrowth and tissue differentiation by local infusion of interleukin-10 in the presence of ultra-high molecular weight polyethylene (UHMWPE) wear particles.
    Goodman S; Trindade M; Ma T; Lee M; Wang N; Ikenou T; Matsuura I; Miyanishi K; Fox N; Regula D; Genovese M; Klein J; Bloch D; Smith RL
    J Biomed Mater Res A; 2003 Apr; 65(1):43-50. PubMed ID: 12635153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent micromotion and polyethylene particles inhibit bone ingrowth into titanium chambers in rabbits.
    Goodman S; Aspenberg P; Song Y; Regula D; Lidgren L
    J Appl Biomater; 1995; 6(3):161-5. PubMed ID: 7492805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COX-2 selective NSAID decreases bone ingrowth in vivo.
    Goodman S; Ma T; Trindade M; Ikenoue T; Matsuura I; Wong N; Fox N; Genovese M; Regula D; Smith RL
    J Orthop Res; 2002 Nov; 20(6):1164-9. PubMed ID: 12472224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cartilage induction by controlled mechanical stimulation in vivo.
    Tägil M; Aspenberg P
    J Orthop Res; 1999 Mar; 17(2):200-4. PubMed ID: 10221836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.