These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12211448)

  • 41. Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: effects of high sediment content on biodegradation.
    Xia XH; Yu H; Yang ZF; Huang GH
    Chemosphere; 2006 Oct; 65(3):457-66. PubMed ID: 16540147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan.
    Yuan SY; Chang BV
    J Environ Sci Health B; 2007 Jan; 42(1):63-9. PubMed ID: 17162569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of sediment-bound PAHs in field-contaminated sediment.
    Lei L; Khodadoust AP; Suidan MT; Tabak HH
    Water Res; 2005; 39(2-3):349-61. PubMed ID: 15644243
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Remediation of PAH-contaminated sediments by chemical oxidation.
    Ferrarese E; Andreottola G; Oprea IA
    J Hazard Mater; 2008 Mar; 152(1):128-39. PubMed ID: 17689010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.
    Zheng XJ; Blais JF; Mercier G; Bergeron M; Drogui P
    Chemosphere; 2007 Jun; 68(6):1143-52. PubMed ID: 17337031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of phenanthrene and its primary metabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions.
    Parikh SJ; Chorover J; Burgos WD
    J Contam Hydrol; 2004 Aug; 72(1-4):1-22. PubMed ID: 15240164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox dynamics during recovery of an oil-impacted estuarine wetland.
    LaRiviere DJ; Autenrieth RL; Bonner JS
    Water Res; 2003 Aug; 37(14):3307-18. PubMed ID: 12834723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polycyclic aromatic hydrocarbon (PAH) concentrations in the dissolved, particulate, and sediment phases in the Luan River watershed, China.
    Bai YJ; Li XQ; Liu WX; Tao S; Wang LG; Wang JF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):365-74. PubMed ID: 18273742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grain-size normalization as a tool to assess contamination in marine sediments: is the <63 micron fraction fine enough?
    Szava-Kovats RC
    Mar Pollut Bull; 2008 Apr; 56(4):629-32. PubMed ID: 18291424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling PAHs adsorption and sequestration in freshwater and marine sediments.
    Brion D; Pelletier E
    Chemosphere; 2005 Nov; 61(6):867-76. PubMed ID: 15982713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon--contaminated sediments of the Niger Delta, Southern Nigeria.
    Olajire AA; Altenburger R; Küster E; Brack W
    Sci Total Environ; 2005 Mar; 340(1-3):123-36. PubMed ID: 15752497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of hydrocyclone and post-treatment technologies for remediation of contaminated dredged sediments.
    Kim JO; Choi J; Lee S; Chung J
    J Environ Manage; 2016 Jan; 166():94-102. PubMed ID: 26496838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of a sigmapolycyclic aromatic hydrocarbon model and a logistic regression model to sediment toxicity data based on a species-specific, water-only LC50 toxic unit for Hyalella azteca.
    Lee JH; Landrum PF; Field LJ; Koh CH
    Environ Toxicol Chem; 2001 Sep; 20(9):2102-13. PubMed ID: 11521842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.
    Sarvar M; Salarirad MM; Shabani MA
    Waste Manag; 2015 Nov; 45():246-57. PubMed ID: 26143534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of hydrocyclone and flotation column for reducing the volume of contaminated dredged material.
    Park KH; Lee JH; Bae BH; Kim YH; Choung YK
    Water Sci Technol; 2006; 53(7):151-7. PubMed ID: 16752776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental remediation of sulfidic tailings with froth flotation: Reducing the consumption of additional resources by optimization of conditioning parameters and water recycling.
    Nuorivaara T; Björkqvist A; Bacher J; Serna-Guerrero R
    J Environ Manage; 2019 Apr; 236():125-133. PubMed ID: 30721830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives.
    Jung MU; Kim YC; Bournival G; Ata S
    Adv Colloid Interface Sci; 2023 Dec; 322():103047. PubMed ID: 37976913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of humic substances in froth flotation processes.
    Reyes-Bozo L; Vyhmeister E; Godoy-Faúndez A; Higueras P; Fúnez-Guerra C; Valdés-González H; Salazar JL; Herrera-Urbina R
    J Environ Manage; 2019 Dec; 252():109699. PubMed ID: 31614260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Froth flotation separation of carbon from barium slag: Recycling of carbon and minimize the slag.
    Yang T; Wang N; Gu H; Guo T
    Waste Manag; 2021 Feb; 120():108-113. PubMed ID: 33290881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregating fine hydrophilic materials in froth flotation to improve separation efficiency through a homo-aggregation flotation process.
    Wang D; Liu Q
    Adv Colloid Interface Sci; 2024 Mar; 325():103110. PubMed ID: 38382295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.