These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12212746)

  • 21. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation.
    Villaverde JJ; Li J; Ek M; Ligero P; de Vega A
    J Agric Food Chem; 2009 Jul; 57(14):6262-70. PubMed ID: 19552425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen-bond interactions of the primary donor of the photosynthetic purple sulfur bacterium Chromatium tepidum.
    Ivancich A; Kobayashi M; Drepper F; Fathir I; Saito T; Nozawa T; Mattioli TA
    Biochemistry; 1996 Aug; 35(32):10529-38. PubMed ID: 8756709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy.
    Hu J; Xiao R; Shen D; Zhang H
    Bioresour Technol; 2013 Jan; 128():633-9. PubMed ID: 23220109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination.
    Reyes-Rivera J; Terrazas T
    Methods Mol Biol; 2024; 2722():149-169. PubMed ID: 37897607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Spectra analysis of lignin small molecular guaiacyl coniferyl alcohol biological modification treated by laccase].
    Liu HT; Pei JC; Hu HR; Pei Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1469-73. PubMed ID: 20707131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring decay of black gum wood (Nyssa sylvatica) during growth of the shiitake mushroom (Lentinula edodes) using diffuse reflectance infrared spectroscopy.
    Vane CH
    Appl Spectrosc; 2003 May; 57(5):514-7. PubMed ID: 14658675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [FTIR spectroscopic studies of the photo-discoloration of Chinese fir].
    Wang XQ; Fei BH; Ren HQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1272-5. PubMed ID: 19650469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen bonding in lignin: a Fourier transform infrared model compound study.
    Kubo S; Kadla JF
    Biomacromolecules; 2005; 6(5):2815-21. PubMed ID: 16153123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infrared and Raman spectra of lignin substructures: Coniferyl alcohol, abietin, and coniferyl aldehyde.
    Bock P; Gierlinger N
    J Raman Spectrosc; 2019 Jun; 50(6):778-792. PubMed ID: 31263319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica.
    Horikawa Y; Hirano S; Mihashi A; Kobayashi Y; Zhai S; Sugiyama J
    Appl Biochem Biotechnol; 2019 Aug; 188(4):1066-1076. PubMed ID: 30783948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation.
    Lewis RN; McElhaney RN; Pohle W; Mantsch HH
    Biophys J; 1994 Dec; 67(6):2367-75. PubMed ID: 7696476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of milled wood lignin (MWL) in Loblolly pine stem wood, residue, and bark.
    Huang F; Singh PM; Ragauskas AJ
    J Agric Food Chem; 2011 Dec; 59(24):12910-6. PubMed ID: 22141335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural characterization of lignin from grape stalks (Vitis vinifera L.).
    Prozil SO; Evtuguin DV; Silva AM; Lopes LP
    J Agric Food Chem; 2014 Jun; 62(24):5420-8. PubMed ID: 24892733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FT-IR and near-infrared FT-Raman study of aggregation of bacteriochlorophyll c in solutions: evidence for involvement of the ester group in the aggregation.
    Sato H; Uehara K; Ishii T; Ozaki Y
    Biochemistry; 1995 Jun; 34(24):7854-60. PubMed ID: 7794896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification phenomena of solid-state lignin caused by electron-abstracting oxidative systems.
    Barsberg S
    Arch Biochem Biophys; 2002 Aug; 404(1):62-70. PubMed ID: 12127070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl.
    Zhang Y; Yang L; Wang D; Li D
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1193-1202. PubMed ID: 28958820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yellowing and IR-changes of spruce wood as result of UV-irradiation.
    Müller U; Rätzsch M; Schwanninger M; Steiner M; Zöbl H
    J Photochem Photobiol B; 2003 Feb; 69(2):97-105. PubMed ID: 12633982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lignin Analysis by HPLC and FTIR.
    Reyes-Rivera J; Terrazas T
    Methods Mol Biol; 2017; 1544():193-211. PubMed ID: 28050837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental effects on the lignin model monomer, vanillyl alcohol, studied by Raman spectroscopy.
    Larsen KL; Barsberg S
    J Phys Chem B; 2011 Oct; 115(39):11470-80. PubMed ID: 21830768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.