BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12212983)

  • 1. The Liverpool Lung Project: a molecular epidemiological study of early lung cancer detection.
    Field JK; Youngson JH
    Eur Respir J; 2002 Aug; 20(2):464-79. PubMed ID: 12212983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Liverpool Lung Project research protocol.
    Field JK; Smith DL; Duffy S; Cassidy A
    Int J Oncol; 2005 Dec; 27(6):1633-45. PubMed ID: 16273220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining high-risk individuals in a population-based molecular-epidemiological study of lung cancer.
    Cassidy A; Myles JP; Liloglou T; Duffy SW; Field JK
    Int J Oncol; 2006 May; 28(5):1295-301. PubMed ID: 16596247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung cancer epigenetics and genetics.
    Risch A; Plass C
    Int J Cancer; 2008 Jul; 123(1):1-7. PubMed ID: 18425819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of a genetic factor into an epidemiologic model for prediction of individual risk of lung cancer: the Liverpool Lung Project.
    Raji OY; Agbaje OF; Duffy SW; Cassidy A; Field JK
    Cancer Prev Res (Phila); 2010 May; 3(5):664-9. PubMed ID: 20424129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative nonsmoking risk factors increase the probability of developing lung cancer.
    Bravo-Iñiguez CE; Fox SW; De Leon LE; Tarascio JN; Jaklitsch MT; Jacobson FL
    J Thorac Cardiovasc Surg; 2019 Oct; 158(4):1248-1254.e1. PubMed ID: 31248631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LLPi: Liverpool Lung Project Risk Prediction Model for Lung Cancer Incidence.
    Marcus MW; Chen Y; Raji OY; Duffy SW; Field JK
    Cancer Prev Res (Phila); 2015 Jun; 8(6):570-5. PubMed ID: 25873368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive accuracy of the Liverpool Lung Project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study.
    Raji OY; Duffy SW; Agbaje OF; Baker SG; Christiani DC; Cassidy A; Field JK
    Ann Intern Med; 2012 Aug; 157(4):242-50. PubMed ID: 22910935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung cancer chemoprevention: an integrated approach.
    Lippman SM; Spitz MR
    J Clin Oncol; 2001 Sep; 19(18 Suppl):74S-82S. PubMed ID: 11560978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple genetic and epigenetic biomarkers for lung cancer detection in cytologically negative sputum and a nested case-control study for risk assessment.
    Hsu HS; Chen TP; Wen CK; Hung CH; Chen CY; Chen JT; Wang YC
    J Pathol; 2007 Dec; 213(4):412-9. PubMed ID: 17973238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing Lung Cancer Risk Prediction Models to Promote Smoking Cessation: Two Randomized Controlled Trials.
    Sherratt FC; Marcus MW; Robinson J; Field JK
    Am J Health Promot; 2018 Jun; 32(5):1196-1205. PubMed ID: 27780895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus statements from the Second International Lung Cancer Molecular Biomarkers Workshop: a European strategy for developing lung cancer molecular diagnostics in high risk populations.
    Field JK; Brambilla C; Caporaso N; Flahault A; Henschke C; Herman J; Hirsch F; Lachmann P; Lam S; Maier S; Montuenga LM; Mulshine J; Murphy M; Pullen J; Spitz M; Tockman M; Tyndale R; Wistuba I; Youngson J
    Int J Oncol; 2002 Aug; 21(2):369-73. PubMed ID: 12118333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future initiatives to reduce lung cancer incidence in the United Kingdom: smoking cessation, radon remediation and the impact of social change.
    Denman AR; Rogers S; Timson K; Phillips PS; Crockett RG; Groves-Kirkby CJ
    Perspect Public Health; 2015 Mar; 135(2):92-101. PubMed ID: 24607815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoking-associated DNA methylation markers predict lung cancer incidence.
    Zhang Y; Elgizouli M; Schöttker B; Holleczek B; Nieters A; Brenner H
    Clin Epigenetics; 2016; 8():127. PubMed ID: 27924164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EUELC project: a multi-centre, multipurpose study to investigate early stage NSCLC, and to establish a biobank for ongoing collaboration.
    Field JK; Liloglou T; Niaz A; Bryan J; Gosney JR; Giles T; Brambilla C; Brambilla E; Vesin A; Timsit JF; Hainaut P; Martinet Y; Vignaud JM; Thunnissen FB; Prinsen C; Snijders PJ; Smit EF; Sozzi G; Roz L; Risch A; Becker HD; Elborn JS; Magee ND; Montuenga LM; Pajares MJ; Lozano MD; O'Byrne KJ; Harrison DJ; Niklinski J; Cassidy A;
    Eur Respir J; 2009 Dec; 34(6):1477-86. PubMed ID: 19948914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic susceptibility to lung cancer: implications for smoking cessation.
    Houfek JF; Atwood JR
    Medsurg Nurs; 2003 Feb; 12(1):45-9. PubMed ID: 12619599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The global impact of noncommunicable diseases: estimates and projections.
    Manton KG
    World Health Stat Q; 1988; 41(3-4):255-66. PubMed ID: 3232413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung cancer: chemoprevention and intermediate effect markers.
    Tockman MS
    IARC Sci Publ; 2001; 154():257-70. PubMed ID: 11220665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular epidemiology of lung cancer.
    Schwartz AG; Prysak GM; Bock CH; Cote ML
    Carcinogenesis; 2007 Mar; 28(3):507-18. PubMed ID: 17183062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationale and design of the Japan molecular epidemiology for lung cancer study.
    Kawaguchi T; Ando M; Ito N; Isa S; Tamiya A; Shimizu S; Saka H; Kubo A; Koh Y; Matsumura A
    Clin Lung Cancer; 2013 Sep; 14(5):596-600. PubMed ID: 23685138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.