These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12213103)

  • 21. Dominance of longitudinal muscle in propagation of intestinal slow waves.
    Bortoff A; Michaels D; Mistretta P
    Am J Physiol; 1981 Mar; 240(3):C135-47. PubMed ID: 7212054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine.
    Suzuki N; Prosser CL; Dahms V
    Am J Physiol; 1986 Mar; 250(3 Pt 1):G287-94. PubMed ID: 3953815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical transmission of slow waves from longitudinal to circular intestinal muscle.
    Bortoff A
    Am J Physiol; 1965 Dec; 209(6):1254-60. PubMed ID: 5846928
    [No Abstract]   [Full Text] [Related]  

  • 24. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon.
    Smith TK; Reed JB; Sanders KM
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C215-24. PubMed ID: 3826336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin and spread of slow waves in canine gastric antral circular muscle.
    Bauer AJ; Publicover NG; Sanders KM
    Am J Physiol; 1985 Dec; 249(6 Pt 1):G800-6. PubMed ID: 4083358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiology of smooth muscle of the small intestine of some mammals.
    Hara Y; Kubota M; Szurszewski JH
    J Physiol; 1986 Mar; 372():501-20. PubMed ID: 3723415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two types of 'slow waves' in intestinal smooth muscle of cat.
    Dahms V; Prosser CL; Suzuki N
    J Physiol; 1987 Nov; 392():51-69. PubMed ID: 3446789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myogenic regulation of propagation in gastric smooth muscle.
    Publicover NG; Sanders KM
    Am J Physiol; 1985 May; 248(5 Pt 1):G512-20. PubMed ID: 3993780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Migrating motor complexes do not require electrical slow waves in the mouse small intestine.
    Spencer NJ; Sanders KM; Smith TK
    J Physiol; 2003 Dec; 553(Pt 3):881-93. PubMed ID: 14514874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine.
    Storr M; Sibaev A; Weiser D; Kelber O; Schirra J; Goke B; Allescher HD
    Digestion; 2004; 70(4):257-64. PubMed ID: 15687728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron microscopy of the connective tissues between longitudinal and circular muscle of small intestine of cat.
    Taylor AB; Kreulen D; Prosser CL
    Am J Anat; 1977 Nov; 150(3):427-41. PubMed ID: 930857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial and temporal coupling between slow waves and pendular contractions.
    Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G898-903. PubMed ID: 16020658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
    O'Grady G; Du P; Paskaranandavadivel N; Angeli TR; Lammers WJ; Asirvatham SJ; Windsor JA; Farrugia G; Pullan AJ; Cheng LK
    Neurogastroenterol Motil; 2012 Jul; 24(7):e299-312. PubMed ID: 22709238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum.
    Horiguchi K; Semple GS; Sanders KM; Ward SM
    J Physiol; 2001 Nov; 537(Pt 1):237-50. PubMed ID: 11711577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mathematical model of pacemaker activity recorded from mouse small intestine.
    Youm JB; Kim N; Han J; Kim E; Joo H; Leem CH; Goto G; Noma A; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1135-54. PubMed ID: 16608700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo.
    Lammers WJ; Ver Donck L; Schuurkes JA; Stephen B
    Can J Physiol Pharmacol; 2005 Nov; 83(11):1031-43. PubMed ID: 16391712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats.
    Lammers WJ; Al-Bloushi HM; Al-Eisaei SA; Al-Dhaheri FA; Stephen B; John R; Dhanasekaran S; Karam SM
    Exp Physiol; 2011 Oct; 96(10):1039-48. PubMed ID: 21742753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the mechanism underlying the difference in motility between the large and small intestine: the "single" and "multiple" pacemaker theory.
    Shafik A; El-Sibai O; Ahmed A
    Front Biosci; 2001 Jun; 6():B1-5. PubMed ID: 11401784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats.
    Lammers WJ; Stephen B; Karam SM
    Am J Physiol Gastrointest Liver Physiol; 2012 Apr; 302(7):G684-9. PubMed ID: 22207580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrotonic spread of slow waves in circular muscle of small intestine.
    Bortoff A; Sachs F
    Am J Physiol; 1970 Feb; 218(2):576-81. PubMed ID: 5412478
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.