These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12213103)

  • 41. Electrical activity of small intestinal smooth muscle.
    Baker RD
    Am J Surg; 1969 Jun; 117(6):781-97. PubMed ID: 4893846
    [No Abstract]   [Full Text] [Related]  

  • 42. Electrical activities of the muscle layers of the canine colon.
    El-Sharkawy TY
    J Physiol; 1983 Sep; 342():67-83. PubMed ID: 6631753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-operation between neural and myogenic mechanisms in the control of distension-induced peristalsis in the mouse small intestine.
    Huizinga JD; Ambrous K; Der-Silaphet T
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):843-56. PubMed ID: 9503342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine.
    Kito Y; Suzuki H
    J Physiol; 2003 Dec; 553(Pt 3):803-18. PubMed ID: 14565995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Propagation of electrical spiking activity along the small intestine: intrinsic versus extrinsic neural influences.
    Bueno L; Praddaude F; Ruckebusch Y
    J Physiol; 1979 Jul; 292():15-26. PubMed ID: 490338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extracellular Cl
    Saravanaperumal SA; Gibbons SJ; Malysz J; Sha L; Linden DR; Szurszewski JH; Farrugia G
    Exp Physiol; 2018 Jan; 103(1):40-57. PubMed ID: 28971566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational simulations of the human magneto- and electroenterogram.
    Lin AS; Buist ML; Cheng LK; Smith NP; Pullan AJ
    Ann Biomed Eng; 2006 Aug; 34(8):1322-31. PubMed ID: 16799829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic dependence of slow waves and spikes in intestinal muscle.
    Liu J; Prosser CL; Job DD
    Am J Physiol; 1969 Nov; 217(5):1542-7. PubMed ID: 5346324
    [No Abstract]   [Full Text] [Related]  

  • 49. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organization of electrical activity in the canine pyloric canal.
    Sanders KM; Vogalis F
    J Physiol; 1989 Sep; 416():49-66. PubMed ID: 2607460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interstitial cells of Cajal and electrical activity of smooth muscle in porcine ileum.
    Hudson NP; Mayhew IG; Pearson GT
    Acta Physiol (Oxf); 2006 Jul; 187(3):391-7. PubMed ID: 16776664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Propagation and electrical entrainment of intestinal slow waves.
    Specht PC; Bortoff A
    Am J Dig Dis; 1972 Apr; 17(4):311-6. PubMed ID: 5019837
    [No Abstract]   [Full Text] [Related]  

  • 54. Effect of Ethanol Exposure on Slow Wave Activity and Smooth Muscle Contraction in the Rat Small Intestine.
    Subramanya SB; Stephen B; Nair SS; Schäfer KH; Lammers WJ
    Dig Dis Sci; 2015 Dec; 60(12):3579-89. PubMed ID: 26204976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophysiological analysis of projections of enteric inhibitory motoneurones in the guinea-pig small intestine.
    Bornstein JC; Costa M; Furness JB; Lang RJ
    J Physiol; 1986 Jan; 370():61-74. PubMed ID: 2870182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons.
    Kunze WA; Clerc N; Bertrand PP; Furness JB
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):547-61. PubMed ID: 10332101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine.
    Seerden TC; Lammers WJ; De Winter BY; De Man JG; Pelckmans PA
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1043-51. PubMed ID: 16099869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results.
    Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrophysiological study of the intestinal smooth muscle of the guinea-pig.
    Kuriyama H; Osa T; Toida N
    J Physiol; 1967 Jul; 191(2):239-55. PubMed ID: 6050103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Canine colonic circular muscle generates action potentials without the pacemaker component.
    Liu LW; Huizinga JD
    Can J Physiol Pharmacol; 1994 Jan; 72(1):70-81. PubMed ID: 7516818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.