These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12213108)
1. Subdiaphragmatic vagal afferent innervation in activation of an opioidergic antinociceptive system in response to colorectal distension in rats. Gschossmann JM; Mayer EA; Miller JC; Raybould HE Neurogastroenterol Motil; 2002 Aug; 14(4):403-8. PubMed ID: 12213108 [TBL] [Abstract][Full Text] [Related]
2. Subdiaphragmatic vagal afferent nerves modulate visceral pain. Chen SL; Wu XY; Cao ZJ; Fan J; Wang M; Owyang C; Li Y Am J Physiol Gastrointest Liver Physiol; 2008 Jun; 294(6):G1441-9. PubMed ID: 18420825 [TBL] [Abstract][Full Text] [Related]
3. 5-HT 3 receptors mediate the time-dependent vagal afferent modulation of nociception during chronic food allergen-sensitized visceral hyperalgesia in rats. Chen S; Li J; Zhang L; Dong X; Gao W; Mo J; Chen H; Xiao S; Li Y Neurogastroenterol Motil; 2009 Nov; 21(11):1222-e113. PubMed ID: 19558425 [TBL] [Abstract][Full Text] [Related]
4. The antinociceptive effects of intravenous dexmedetomidine in colorectal distension-induced visceral pain in rats: the role of opioid receptors. Ulger F; Bozkurt A; Bilge SS; Ilkaya F; Dilek A; Bostanci MO; Ciftcioglu E; Güldogus F Anesth Analg; 2009 Aug; 109(2):616-22. PubMed ID: 19608839 [TBL] [Abstract][Full Text] [Related]
5. Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Traub RJ; Sengupta JN; Gebhart GF Neuroscience; 1996 Oct; 74(3):873-84. PubMed ID: 8884783 [TBL] [Abstract][Full Text] [Related]
6. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats. Cao B; Zhang X; Yan N; Chen S; Li Y Mol Brain; 2012 Jun; 5():19. PubMed ID: 22681758 [TBL] [Abstract][Full Text] [Related]
7. Dual role of 5-HT3 receptors in a rat model of delayed stress-induced visceral hyperalgesia. Bradesi S; Lao L; McLean PG; Winchester WJ; Lee K; Hicks GA; Mayer EA Pain; 2007 Jul; 130(1-2):56-65. PubMed ID: 17161536 [TBL] [Abstract][Full Text] [Related]
8. Luminal serotonin time-dependently modulates vagal afferent driven antinociception in response to colorectal distention in rats. Zhang LY; Dong X; Liu ZL; Mo JZ; Fang JY; Xiao SD; Li Y; Chen SL Neurogastroenterol Motil; 2011 Jan; 23(1):62-9, e6. PubMed ID: 20723070 [TBL] [Abstract][Full Text] [Related]
9. Vagal and splanchnic sensory pathways mediate inhibition of gastric motility induced by duodenal distension. Hölzer HH; Raybould HE Am J Physiol; 1992 Apr; 262(4 Pt 1):G603-8. PubMed ID: 1566842 [TBL] [Abstract][Full Text] [Related]
10. The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension. Shafton AD; Furness JB; Ferens D; Bogeski G; Koh SL; Lean NP; Kitchener PD Pain; 2006 Jul; 123(1-2):127-36. PubMed ID: 16707223 [TBL] [Abstract][Full Text] [Related]
11. Vagal modulation of spinal nicotine-induced inhibition of the inflammatory response mediated by descending antinociceptive controls. Miao FJ; Green P; Benowitz N; Levine JD Neuropharmacology; 2003 Oct; 45(5):605-11. PubMed ID: 12941374 [TBL] [Abstract][Full Text] [Related]
12. Vagal afferents mediate antinociception of estrogen in a rat model of visceral pain: the involvement of intestinal mucosal mast cells and 5-hydroxytryptamine 3 signaling. Yan XJ; Feng CC; Liu Q; Zhang LY; Dong X; Liu ZL; Cao ZJ; Mo JZ; Li Y; Fang JY; Chen SL J Pain; 2014 Feb; 15(2):204-17. PubMed ID: 24231720 [TBL] [Abstract][Full Text] [Related]
13. Secretin at physiological doses inhibits gastric motility via a vagal afferent pathway. Lu Y; Owyang C Am J Physiol; 1995 Jun; 268(6 Pt 1):G1012-6. PubMed ID: 7611400 [TBL] [Abstract][Full Text] [Related]
15. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents. Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834 [TBL] [Abstract][Full Text] [Related]
16. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Stearns AT; Balakrishnan A; Radmanesh A; Ashley SW; Rhoads DB; Tavakkolizadeh A Dig Dis Sci; 2012 May; 57(5):1281-90. PubMed ID: 22138962 [TBL] [Abstract][Full Text] [Related]
17. Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Mönnikes H; Rüter J; König M; Grote C; Kobelt P; Klapp BF; Arnold R; Wiedenmann B; Tebbe JJ Brain Res; 2003 Mar; 966(2):253-64. PubMed ID: 12618348 [TBL] [Abstract][Full Text] [Related]
18. Role of the vagus nerve on the development of postoperative ileus. Gao Z; Müller MH; Karpitschka M; Mittler S; Kasparek MS; Renz B; Sibaev A; Glatzle J; Li Y; Kreis ME Langenbecks Arch Surg; 2010 Apr; 395(4):407-11. PubMed ID: 20333399 [TBL] [Abstract][Full Text] [Related]
19. Mechanosensitive duodenal afferents contribute to vagal modulation of inflammation in the rat. Miao FJ; Green PG; Levine JD J Physiol; 2004 Jan; 554(Pt 1):227-35. PubMed ID: 14678504 [TBL] [Abstract][Full Text] [Related]
20. Involvement of spinal calcitonin gene-related peptide in the development of acute visceral hyperalgesia in the rat. Gschossmann JM; Coutinho SV; Miller JC; Huebel K; Naliboff B; Wong HC; Walsh JH; Mayer EA Neurogastroenterol Motil; 2001 Jun; 13(3):229-36. PubMed ID: 11437985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]