BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12213304)

  • 21. Vagal afferent inhibition of primate thoracic spinothalamic neurons.
    Ammons WS; Blair RW; Foreman RD
    J Neurophysiol; 1983 Oct; 50(4):926-40. PubMed ID: 6631470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phrenic nerve inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys.
    Chandler MJ; Zhang J; Foreman RD
    Brain Res; 1998 Jul; 798(1-2):93-100. PubMed ID: 9666091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder.
    Castroman PJ; Ness TJ
    Anesthesiology; 2002 Jun; 96(6):1410-9. PubMed ID: 12170054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscerovisceral convergence of urinary bladder and colorectal inputs to lumbosacral spinal neurons in rats.
    Qin C; Foreman RD
    Neuroreport; 2004 Mar; 15(3):467-71. PubMed ID: 15094505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visceral nociceptive input to the area of the medullary lateral reticular nucleus ascends in the lateral spinal cord.
    Robbins MT; Uzzell TW; Aly S; Ness TJ
    Neurosci Lett; 2005 Jun; 381(3):329-33. PubMed ID: 15896494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that C1 and C2 propriospinal neurons mediate the inhibitory effects of viscerosomatic spinal afferent input on primate spinothalamic tract neurons.
    Hobbs SF; Oh UT; Chandler MJ; Fu QG; Bolser DC; Foreman RD
    J Neurophysiol; 1992 Apr; 67(4):852-60. PubMed ID: 1588386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon.
    Katter JT; Dado RJ; Kostarczyk E; Giesler GJ
    J Neurophysiol; 1996 Jun; 75(6):2581-605. PubMed ID: 8793765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate.
    Al-Chaer ED; Feng Y; Willis WD
    J Neurophysiol; 1999 Oct; 82(4):1876-82. PubMed ID: 10515976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Afferent pathways and responses of T3-T4 spinal neurons to cervical and thoracic esophageal distensions in rats.
    Qin C; Chandler MJ; Foreman RD
    Auton Neurosci; 2003 Nov; 109(1-2):10-20. PubMed ID: 14638308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical activation of cervical cell bodies: effects on responses to colorectal distension in lumbosacral spinal cord of rats.
    Qin C; Chandler MJ; Miller KE; Foreman RD
    J Neurophysiol; 1999 Dec; 82(6):3423-33. PubMed ID: 10601473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses and afferent pathways of C(1)-C(2) spinal neurons to gastric distension in rats.
    Qin C; Chandler MJ; Miller KE; Foreman RD
    Auton Neurosci; 2003 Mar; 104(2):128-36. PubMed ID: 12648614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of thalamic neuronal responses to urinary bladder distention, including the effect of acute spinal lesions in the rat.
    Robbins MT; Uzzell TW; Aly S; Ness TJ
    J Pain; 2006 Mar; 7(3):218-24. PubMed ID: 16516828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiopulmonary sympathetic afferent excitation of lower thoracic spinoreticular and spinothalamic neurons.
    Ammons WS
    J Neurophysiol; 1990 Dec; 64(6):1907-16. PubMed ID: 2074472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats.
    Qin C; Chandler MJ; Miller KE; Foreman RD
    J Neurophysiol; 2001 Apr; 85(4):1522-32. PubMed ID: 11287476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thoracic visceral inputs use upper cervical segments to inhibit lumbar spinal neurons in rats.
    Zhang J; Chandler MJ; Foreman RD
    Brain Res; 1996 Feb; 709(2):337-42. PubMed ID: 8833773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses and afferent pathways of C1-C2 spinal neurons to cervical and thoracic esophageal stimulation in rats.
    Qin C; Chandler MJ; Jou CJ; Foreman RD
    J Neurophysiol; 2004 May; 91(5):2227-35. PubMed ID: 14695350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Periventricular gray inhibition of thoracic spinothalamic cells projecting to medial and lateral thalamus.
    Ammons WS; Girardot MN; Foreman RD
    J Neurophysiol; 1986 May; 55(5):1091-103. PubMed ID: 3711968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats.
    Qin C; Lehew RT; Khan KA; Wienecke GM; Foreman RD
    Neurosci Res; 2007 May; 58(1):58-66. PubMed ID: 17324482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pelvic nerve input mediates descending modulation of homovisceral processing in the thoracolumbar spinal cord of the rat.
    Wang G; Tang B; Traub RJ
    Gastroenterology; 2007 Nov; 133(5):1544-53. PubMed ID: 17916357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of spinoreticular and spinothalamic neurons with renal input.
    Ammons WS
    J Neurophysiol; 1987 Sep; 58(3):480-95. PubMed ID: 3655878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.