These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12213660)

  • 21. Artificial RNA Polymerase II Elongation Complexes for Dissecting Co-transcriptional RNA Processing Events.
    Noe Gonzalez M; Conaway JW; Conaway RC
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle.
    Lin PS; Tremeau-Bravard A; Dahmus ME
    Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation in transcription: the CTD and more.
    Riedl T; Egly JM
    Gene Expr; 2000; 9(1-2):3-13. PubMed ID: 11097421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination.
    Dichtl B; Blank D; Sadowski M; Hübner W; Weiser S; Keller W
    EMBO J; 2002 Aug; 21(15):4125-35. PubMed ID: 12145212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA polymerase II holoenzyme and transcriptional regulation.
    Greenblatt J
    Curr Opin Cell Biol; 1997 Jun; 9(3):310-9. PubMed ID: 9159076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A CTD function linking transcription to splicing.
    Corden JL; Patturajan M
    Trends Biochem Sci; 1997 Nov; 22(11):413-6. PubMed ID: 9397679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential entry of components of the gene expression machinery into daughter nuclei.
    Prasanth KV; Sacco-Bubulya PA; Prasanth SG; Spector DL
    Mol Biol Cell; 2003 Mar; 14(3):1043-57. PubMed ID: 12631722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation.
    Dermody JL; Dreyfuss JM; Villén J; Ogundipe B; Gygi SP; Park PJ; Ponticelli AS; Moore CL; Buratowski S; Bucheli ME
    PLoS One; 2008 Sep; 3(9):e3273. PubMed ID: 18818768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors.
    Bentley DL
    Curr Opin Cell Biol; 2005 Jun; 17(3):251-6. PubMed ID: 15901493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila.
    Andrulis ED; Werner J; Nazarian A; Erdjument-Bromage H; Tempst P; Lis JT
    Nature; 2002 Dec 19-26; 420(6917):837-41. PubMed ID: 12490954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of transcription elongation by phosphorylation.
    Kobor MS; Greenblatt J
    Biochim Biophys Acta; 2002 Sep; 1577(2):261-275. PubMed ID: 12213657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling pre-mRNA processing to transcription on the RNA factory assembly line.
    Lee KM; Tarn WY
    RNA Biol; 2013 Mar; 10(3):380-90. PubMed ID: 23392244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog?
    Steinmetz EJ
    Cell; 1997 May; 89(4):491-4. PubMed ID: 9160740
    [No Abstract]   [Full Text] [Related]  

  • 36. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner.
    Nemec CM; Yang F; Gilmore JM; Hintermair C; Ho YH; Tseng SC; Heidemann M; Zhang Y; Florens L; Gasch AP; Eick D; Washburn MP; Varani G; Ansari AZ
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E3944-E3953. PubMed ID: 28465432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
    de la Mata M; Kornblihtt AR
    Nat Struct Mol Biol; 2006 Nov; 13(11):973-80. PubMed ID: 17028590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription.
    Erie DA
    Biochim Biophys Acta; 2002 Sep; 1577(2):224-39. PubMed ID: 12213654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing.
    Das R; Yu J; Zhang Z; Gygi MP; Krainer AR; Gygi SP; Reed R
    Mol Cell; 2007 Jun; 26(6):867-81. PubMed ID: 17588520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.