These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12213933)
1. Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress. Benndorf D; Babel W Microbiology (Reading); 2002 Sep; 148(Pt 9):2883-2888. PubMed ID: 12213933 [TBL] [Abstract][Full Text] [Related]
2. Regulation of catabolic enzymes during long-term exposure of Delftia acidovorans MC1 to chlorophenoxy herbicides. Benndorf D; Davidson I; Babel W Microbiology (Reading); 2004 Apr; 150(Pt 4):1005-1014. PubMed ID: 15073309 [TBL] [Abstract][Full Text] [Related]
3. Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Müller RH; Kleinsteuber S; Babel W Microbiol Res; 2001; 156(2):121-31. PubMed ID: 11572451 [TBL] [Abstract][Full Text] [Related]
4. Induction of stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field. Cho YS; Park SH; Kim CK; Oh KH Curr Microbiol; 2000 Jul; 41(1):33-8. PubMed ID: 10919396 [TBL] [Abstract][Full Text] [Related]
5. GroEL to DnaK chaperone network behind the stability modulation of σ(32) at physiological temperature in Escherichia coli. Patra M; Roy SS; Dasgupta R; Basu T FEBS Lett; 2015 Dec; 589(24 Pt B):4047-52. PubMed ID: 26545493 [TBL] [Abstract][Full Text] [Related]
6. Declining capacity of starving Delftia acidovorans MC1 to degrade phenoxypropionate herbicides correlates with oxidative modification of the initial enzyme. Leibeling S; Schmidt F; Jehmlich N; von Bergen M; Müller RH; Harms H Environ Sci Technol; 2010 May; 44(10):3793-9. PubMed ID: 20397636 [TBL] [Abstract][Full Text] [Related]
7. Genetic analysis of phenoxyalkanoic acid degradation in Sphingomonas herbicidovorans MH. Müller TA; Byrde SM; Werlen C; van der Meer JR; Kohler HP Appl Environ Microbiol; 2004 Oct; 70(10):6066-75. PubMed ID: 15466552 [TBL] [Abstract][Full Text] [Related]
8. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
9. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. Muffler A; Barth M; Marschall C; Hengge-Aronis R J Bacteriol; 1997 Jan; 179(2):445-52. PubMed ID: 8990297 [TBL] [Abstract][Full Text] [Related]
10. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648 [TBL] [Abstract][Full Text] [Related]
11. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells. Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456 [TBL] [Abstract][Full Text] [Related]
12. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834 [TBL] [Abstract][Full Text] [Related]
13. Uptake kinetics of 2,4-dichlorophenoxyacetate by Delftia acidovorans MC1 and derivative strains: complex characteristics in response to pH and growth substrate. Müller RH; Hoffmann D Biosci Biotechnol Biochem; 2006 Jul; 70(7):1642-54. PubMed ID: 16861799 [TBL] [Abstract][Full Text] [Related]
14. A Bacillus-specific factor is needed to trigger the stress-activated phosphatase/kinase cascade of sigmaB induction. Scott JM; Smirnova N; Haldenwang WG Biochem Biophys Res Commun; 1999 Apr; 257(1):106-10. PubMed ID: 10092518 [TBL] [Abstract][Full Text] [Related]
15. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. El Hage A; Sbaï M; Alix JH Mol Gen Genet; 2001 Feb; 264(6):796-808. PubMed ID: 11254127 [TBL] [Abstract][Full Text] [Related]
16. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock. Chakraborty A; Mukherjee S; Chattopadhyay R; Roy S; Chakrabarti S J Phys Chem B; 2014 May; 118(18):4793-802. PubMed ID: 24766146 [TBL] [Abstract][Full Text] [Related]
17. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Liberek K; Galitski TP; Zylicz M; Georgopoulos C Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647 [TBL] [Abstract][Full Text] [Related]
18. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
19. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
20. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]