These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12213933)
21. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833 [TBL] [Abstract][Full Text] [Related]
22. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli. Kanemori M; Mori H; Yura T J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010 [TBL] [Abstract][Full Text] [Related]
23. A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32. Miyazaki R; Yura T; Suzuki T; Dohmae N; Mori H; Akiyama Y Sci Rep; 2016 Apr; 6():24147. PubMed ID: 27052372 [TBL] [Abstract][Full Text] [Related]
24. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus. Benndorf D; Loffhagen N; Babel W Electrophoresis; 1999; 20(4-5):781-9. PubMed ID: 10344248 [TBL] [Abstract][Full Text] [Related]
25. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H; Yuzawa H; Kanemori M; Yura T Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941 [TBL] [Abstract][Full Text] [Related]
26. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator. Liberek K; Wall D; Georgopoulos C Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6224-8. PubMed ID: 7603976 [TBL] [Abstract][Full Text] [Related]
27. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404 [TBL] [Abstract][Full Text] [Related]
28. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. van der Meer JR; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Apr; 173(8):2425-34. PubMed ID: 2013566 [TBL] [Abstract][Full Text] [Related]
29. Extremely low frequency magnetic field exposure affects DnaK and GroEL expression in E. coli cells with impaired heat shock response. Del Re B; Marcantonio P; Bersani F; Giorgi G Gen Physiol Biophys; 2009 Dec; 28(4):420-4. PubMed ID: 20097965 [TBL] [Abstract][Full Text] [Related]
30. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Gamer J; Bujard H; Bukau B Cell; 1992 May; 69(5):833-42. PubMed ID: 1534276 [TBL] [Abstract][Full Text] [Related]
31. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. Potrawfke T; Armengaud J; Wittich RM J Bacteriol; 2001 Feb; 183(3):997-1011. PubMed ID: 11208799 [TBL] [Abstract][Full Text] [Related]
32. Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1. Schleinitz KM; Kleinsteuber S; Vallaeys T; Babel W Appl Environ Microbiol; 2004 Sep; 70(9):5357-65. PubMed ID: 15345421 [TBL] [Abstract][Full Text] [Related]
33. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. Kyratsous CA; Panagiotidis CA Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895 [TBL] [Abstract][Full Text] [Related]
34. A chaperone network controls the heat shock response in E. coli. Guisbert E; Herman C; Lu CZ; Gross CA Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634 [TBL] [Abstract][Full Text] [Related]
35. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
36. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a sigma 32-like sigma factor. Mantis NJ; Winans SC J Bacteriol; 1992 Feb; 174(3):991-7. PubMed ID: 1732231 [TBL] [Abstract][Full Text] [Related]
38. A role of heat shock proteins for homologous recombination in Escherichia coli. Ogata Y; Miki T; Sekimizu K Biochem Biophys Res Commun; 1993 Nov; 197(1):34-9. PubMed ID: 7902713 [TBL] [Abstract][Full Text] [Related]
39. Heat-resistance and heat-shock response in the nosocomial pathogen Enterococcus faecium. Silva Laport M; da Silva MR; Costa Silva C; do Carmo de Freire Bastos M; Giambiagi-deMarval M Curr Microbiol; 2003 May; 46(5):313-7. PubMed ID: 12732956 [TBL] [Abstract][Full Text] [Related]
40. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]